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Abstract—Despite decades pursuing efficient hardware de-
sign for signal processing based on linear algebra, traditional
hardware description languages (HDLs)-based design workflows
remain challenging and time-consuming. High-level synthesis
(HLS) provides an easier approach but still requires thorough
designs of basic modules concerning linear transformations to
achieve acceptable hardware efficiency. To simplify the HLS
workflow, we propose the FLAMES library, which provides
efficient ready-to-use linear transformation modules. Users can
implement algorithms with significantly higher code-writing effi-
ciency via the FLAMES library. We demonstrate its effectiveness
by implementing the orthogonal matching pursuit list (OMPL)
algorithm for compressed sensing in FPGA, achieving 1.56× and
1.12× throughput/slice compared with traditional HLS for the
sequential and parallel architecture, respectively.

Index Terms—High-level synthesis (HLS), linear transforma-
tions, compressed sensing, hardware implementation, field pro-
grammable gate array (FPGA).

I. INTRODUCTION

H IGH-LEVEL synthesis (HLS) for hardware implementa-
tion can transcompile high-level programming languages

like C/C++ into register-transfer level (RTL) designs [1]–[3].
HLS simplifies the hardware design workflow and lowers the
barrier to obtaining efficient architectures [4]. Moreover, it
can explore design space to achieve better performance with
Pareto-optimal solutions [5]. Despite the promising future of
HLS, limitations remain: users must adhere to strict coding
guidelines to optimize hardware design [6], conflicting with
the HLS concept of a simplified hardware design paradigm.

To alleviate these limitations of HLS, higher-level libraries
are constructed for complexity reduction and performance
enhancement. The proposed template-based method in [7]
shows its superiority in several cases. FBLAS [8] ports the
basic linear algebra subprograms (BLAS) library to HLS,
promoting HLS design productivity. However, the complicated
interfaces of [7], [8] impose inflexibility for users in practical
scenarios. We take advantage of class and template of
C++ with Vitis HLS [9] to further reduce the gap between
HLS design and software algorithms by providing a user-
friendly library with concise and customizable interfaces like
Armadillo C++ library [10]. Algorithms can be efficiently
implemented with the matrix-based library since an algorithm
can be viewed as matrices and their transformations. The
optimized hardware can be obtained by simply mapping the
matrix transformations into HLS code without the need for
extensive design. Our contributions are as follows:

W. Zhao and C. Li contributed equally to the paper.

1) We present the novel matrix-based HLS library con-
cept FLAMES (Flexible Linear Algebra with Matrix-
Empowered Synthesis) for fast algorithm implementa-
tion, which is designed as a header-only C++ library for
Vitis HLS, simplifying the design workflow of signal
processing modules based on linear transformations;

2) With our designed HLS library, efficient architectures
for orthogonal matching pursuit list (OMPL) com-
pressed sensing (CS) are implemented as a verification.
The sequential and parallel designs achieve throughput
94.81 Mb/s and 184.5 Mb/s (1.56× and 1.12× through-
put/slice compared with traditional HLS), respectively,
with significantly reduced design complexity.

Notations: In this paper, lower-case and upper-case boldface
letters a and A stand for vector and matrix, respectively. AT

and A−1 represent the transpose and inverse of matrix A,
respectively. ∥a∥1 and ∥a∥2 take the ℓ1- and ℓ2-norm of vector
a, respectively. ⟨a, b⟩ denotes the inner product of vector a
and b. ⌊𝑥⌋ is the floor function returning the largest integer
smaller or equal to 𝑥. Finally, N(𝜇, 𝜎2) denotes the Gaussian
distribution with mean 𝜇 and variance 𝜎2.

II. HLS LIBRARY DESIGN

A. Framework and Syntax

Despite the power of HLS tools, designing hardware-
efficient solutions still requires substantial knowledge and
experience in hardware design. Existing HLS libraries like
[7], [8] are not as user-friendly as popular linear algebra
libraries for general C++ programming like Armadillo [10].
To address the issue, we propose a matrix-based library design
where matrix operations and functions are at the center of
the design, which enables signal processing algorithms to be
expressed in their original form with minimal adjustments
without the need for data decomposition or pipeline designs.
It supports most basic matrix operations in Armadillo [11].
For synthesis, operations requiring dynamic memory alloca-
tion are not supported. Table I provides several examples of
library syntax. One notable feature of the FLAMES library
is its unified user interface, which does not rely on low-level
variable types such as C arrays, C++ standard containers, or
streams. It makes the HLS design better organized and less
redundant. Furthermore, the library is designed to be header-
only, making it easy to install and fully portable. Users only
need to include the required header file to access the classes
and utilities provided by the FLAMES library, which is open
source at https://github.com/autohdw/flames.

https://doi.org/10.1109/TCSII.2024.3366282
https://github.com/autohdw/flames
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T* const Addr.
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MatViewT
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MatViewDiag
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MatRefRow
MatRefCols
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inherit

Read Only Read Only
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Copy
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Conversion w/ Data Copy
Address Pointer
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Fig. 1. Classes and their relationships in the FLAMES library, where ‘@’ is a placeholder for function names, such as ‘t’ and ‘col’. T is the data type.

TABLE I
LIBRARY SYNTAX EXAMPLES

HLS Code Description
A + B and A - B addition/subtraction
A * B and A % B multiplication/element-wise multiplication

A += B or A.add(B) self adding another matrix
A.t() and -A transpose/negation

A(2,3) or A.at(2,3) accessing element of row 2 column 3
A.row(1) accessing row 1

A.cols({2,3,4}) accessing columns 2, 3 and 4
A.diagMat() diagonal as matrix

A and B are both matrices.

B. Basic Structure

The FLAMES library provides several primary classes for
matrix and tensor operations, depicted in Fig. 1. These classes
include Mat for matrices, MatRef for matrix references,
MatView for read-only matrix views, and Tensor for ten-
sors. MatRef and MatView can be used for simple matrix
transformations without data copying. To be specific, MatRef
has a constant pointer to the original data, while MatView
has a pointer to constant values with read-only access. In
addition, MatView and MatRef can be converted back to
Mat using the .asMat method to allocate the required RAM.
The Tensor class allocates RAM slice by slice, and slices
can be accessed using a MatRef or MatView with the
.slice method or the [] operator by specifying the slice
index. Matrices and tensors have different types that determine
data arrangement. To simplify the use of FLAMES, the auto
keyword can be leveraged to automatically infer MatView
and MatRef types without explicit declaration.

C. Hardware-friendly Design

In addition to the simple user interface, the FLAMES library
is carefully designed for efficient hardware implementation.

1) Optimized RAM Usage: Matrices are often partitioned
in algorithm implementations for performance enhancement,
imposing difficulties for hardware designers [12]–[14]. In
contrast, the FLAMES library offers a neat matrix-based inter-
face while optimizing RAM usage with different MatTypes.
For instance, diagonal matrices (MatType::DIAGONAL) and
upper triangular matrices (MatType::UPPER) are efficiently

(0, 0)
(0, 1)
(0, 2)
(0, 3)
(1, 0)
(1, 1)
(1, 2)
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RAM Data

•
Wiring

Fig. 2. Permutation network for 4 × 2 transposed matrix.

stored exploiting their structural properties, while providing
a unified user interface. Furthermore, MatView avoids un-
wanted intermediate RAMs due to the lack of return value
optimization (RVO) in Vitis HLS. For example, the permuta-
tion of the transposed matrix (Fig. 2) is achieved using the
MatViewT class inherited from MatView, which connects
wires to the original data instead of copying and allocating
RAM for the transposed matrix.

2) Configurable Parallelism: The library employs the HLS
pragma internally provided by Vitis HLS, controlling the
pipelining, unrolling, loop flattening, etc. The parallelism for
matrix multiplication, matrix copying, etc. can be config-
ured separately, by defining the corresponding macro such
as FLAMES_MAT_TIMES_UNROLL_FACTOR. Similarly, the
data array partitioning can also be configured.

3) Optimized Matrix Operations: The FLAMES library
optimizes matrix operations by leveraging the distinctive prop-
erties of different matrices. To achieve case-specific hardware
optimization, the library employs function overloading. As
shown in section III, users do not need to distinguish over 50
overloading functions for matrix multiplication, as optimiza-
tion is applied automatically. Additionally, FLAMES offers
commonly used functions in linear transformations and signal
processing. For example, for a diagonally dominant matrix A,
its inverse can be computed efficiently with Neumann series
approximation (NSA) [15] as

A−1 = lim
𝑛→∞

𝑛∑︁
𝑖=0
(−D−1E)𝑖D−1, (1)

where A = D + E, D ≜ A ◦ I is the diagonal part while E
is the off-diagonal part (◦ represents the Hadamard product).
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TABLE II
NSA ALGORITHM AND FLAMES CODE

Step Algorithm FLAMES C++ Implementation
1 D = A ◦ I auto D = mat.diagMat_();
2 E = A − D auto E = mat.offDiag_();
3 D𝐼 = D−1 auto D_I = D.inv();
4 P = −D𝐼E auto P = -D_I * E;
5 X = P (Iter. 1) auto X = P_ = P;
6 for 𝑖 = 2, · · · , 𝑛 for (int i = 2; i <= n; ++i) {
7 P𝑖 = P𝑖−1P P_ *= P;
8 X = X + P𝑖 X += P_;
9 end }

10 A−1 = XD𝐼 + D𝐼 A_inv = X * D_I + D_I;

Algorithm 1 OMPL with square-root-free QR decomposition.

Input: 𝚽 ∈ R𝑀×𝑁 , y ∈ R𝑀×1.
Initialization: x̂ = O𝑁×1.

1: for 𝑖 = 0, 1, · · · , 𝐿 − 1 do
2: for 𝑗 = 0, 1, · · · , 𝑛 − 1 do ⊲ BRANCH.
3: s̃ 𝑗𝑛

𝑖
, s̃ 𝑗𝑛+1

𝑖
, · · · , s̃( 𝑗+1)𝑛−1

𝑖
= arg max(𝑛)

𝑘
|⟨r 𝑗 ,𝚽:,𝑘⟩|;

4: for 𝑘 = 0, 1, · · · , 𝑛 − 1 do ⊲ SUBBRANCH.
5: w = 𝚽:,s̃ 𝑗𝑛+𝑘

𝑖

;
6: for 𝑞 = 0, 1, · · · , 𝑖 − 1 do
7: R̃ 𝑗𝑛+𝑘

𝑞,𝑖
= (Q̃ 𝑗𝑛+𝑘

:,𝑞 )Tw;
8: w = w − (R̃ 𝑗𝑛+𝑘

𝑞,𝑖
/R̃ 𝑗𝑛+𝑘

𝑞,𝑞 )Q̃ 𝑗𝑛+𝑘
:,𝑞 ;

9: R̃ 𝑗𝑛+𝑘
𝑖,𝑖

= ∥w∥22, Q̃ 𝑗𝑛+𝑘
:,𝑖 = w;

10: r̃ 𝑗𝑛+𝑘 = r̃ 𝑗𝑛+𝑘 − (⟨Q̃ 𝑗𝑛+𝑘
:,𝑖 , r̃ 𝑗𝑛+𝑘⟩/R̃ 𝑗𝑛+𝑘

𝑖,𝑖
)Q̃ 𝑗𝑛+𝑘

:,𝑖 ;
11: a = u arg min(𝑛)

𝑘
∥r̃𝑘 ∥1; ⊲ MERGE.

12: for 𝑗 = 0, 1, · · · , 𝑛 − 1 do
13: r 𝑗 = r̃a 𝑗 , Q 𝑗 = Q̃a 𝑗 , R 𝑗 = R̃a 𝑗 , s 𝑗 = s̃a 𝑗 ;
14: for 𝑗 = 0, 1, · · · , 𝑛2 − 1 do
15: r̃ 𝑗 = r⌊ 𝑗/𝑛⌋ , Q̃ 𝑗 = Q⌊ 𝑗/𝑛⌋ , R̃ 𝑗 = R⌊ 𝑗/𝑛⌋ , s̃ 𝑗 = s⌊ 𝑗/𝑛⌋ ;
16: 𝑚 = arg min𝑘 ∥r𝑘 ∥1; Q = Q𝑚, R = R𝑚, s = s𝑚;
17: for 𝑙 = 0, 1, · · · , 𝐿 − 1 do ⊲ SOLVE.
18: x̂s𝐿−𝑙−1 = (⟨Q:,𝐿−𝑙+1, y⟩ − R𝐿−𝑙−1,:̂xs)/R𝐿−𝑙−1,𝐿−𝑙−1;
Output: Estimated 𝐿-sparse signal x̂.

As shown in Table II, it is simple to map an algorithm to the
FLAMES code.

III. CASE STUDY AND VERIFICATION

Compressed sensing [16] is a powerful technique with
numerous applications, including millimeter wave (mmWave)
channel estimation in the angular domain for multiple-input
multiple-output (MIMO) systems [17], [18]. It is modeled as

y = 𝚽x + n, (2)

where y ∈ R𝑀×1 is the compressed signal, 𝚽 ∈ R𝑀×𝑁 (𝑀 <

𝑁) is the sensing matrix, x ∈ R𝑁×1 is the original 𝐿-sparse
signal, n ∼ N(0, 𝜎2

𝑛) is the additive white Gaussian noise
(AWGN), and 𝜎2

𝑛 is the noise variance. The OMP algorithm
in [19] can be employed to achieve efficient sparse signal
recovery. However, the performance of OMP is not satisfactory
enough, and an efficient OMPL algorithm in [20] can be
applied to enhance the recovery performance. The OMPL
algorithm extends the OMP iteration to 𝑛 lists, which are
branched and merged in each iteration. Every set of support
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Fig. 3. Hardware architecture of OMPL. (a) Sequential. (b) Parallel.
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#1 #2
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→ Task 2 →

Task 1←
Iter. 1 Iter. 2

(b)

Fig. 4. Timeline of (a) sequential and (b) parallel designs with 𝐿 = 2, 𝑛 = 2.

indices is a candidate in OMPL. With the square-root-free
QR decomposition [21] method for OMP proposed in [22],
the OMPL algorithm can be represented as Alg. 1.

The hardware architecture of OMPL consists of 4 modules.
For a given candidate, the BRANCH module computes 𝑛

sub-candidates. The SUBBRANCH module updates the QR
decomposition result and residual of a sub-candidate. The
MERGE module selects the best 𝑛 candidates among the 𝑛2

sub-candidates according to their residual. The SOLVE module
solves the least square (LS) problem. The sequential architec-
ture (Fig. 3(a)) reuses one BRANCH module and one SUB-
BRANCH module, whereas the parallel architecture (Fig. 3(b))
contains 𝑛 BRANCH modules and 𝑛2 SUBBRANCH modules.
In each iteration, the parallel architecture processes all the
sub-candidates in parallel. As is shown in the timeline traces
(Fig. 4), task-level pipelining is automatically achieved for
both architectures. With matrix-based operations, FLAMES
provides a clearer task flow, making it easier for users to
fully exploit the task-level pipelining optimization provided by
HLS tools. Due to the iterative nature of OMPL, pipelining
is limited in this case. To demonstrate the availability of
task-level pipelining optimization, an additional example is
provided in [11].

The main iterations of OMPL compressed sensing are be-
tween step 1 and 15, where BRANCH and MERGE operations
are repeated.

BRANCH (step 3). For each candidate, BRANCH selects
𝑛 new support indices as sub-candidates according to the
correlation of 𝚽 and r 𝑗 as illustrated in Fig. 5. A binary
sensing matrix with 1-bit quantization is used [23]–[25] to
simplify the correlation calculation, resulting in 𝚽 being
Mat<bool,M,N> in FLAMES. Simply writing *, the bi-
nary matrix-vector multiplication is specially optimized in
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FLAMES with configurable parallelism 𝑝: a multiplexer array
followed by an adder and accumulator array is employed. This
corresponds to the internal implementation of += following
an if condition. The accumulator array outputs the 𝚽Tr 𝑗

vector every 𝑀
𝑝

clock cycles, which is then processed with
an absolute value calculating array before the sorting network
locates the 𝑛 largest elements of the vector. Each of the
sub-candidates leads to one SUBBRANCH. Notably, only one
BRANCH operation is required in the first iteration.
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Fig. 5. Hardware architecture of the BRANCH module.

SUBBRANCH (step 4 to 10). With the square-root-free QR
decomposition [22], w, R̃:,𝑖 and Q̃:,𝑖 are calculated iteratively
by reusing linear transformation units including vector-vector
multiplication and vector-scalar multiplication. For hardware
efficiency, R̃−1

𝑖,𝑖
is stored instead of R̃𝑖,𝑖 . In Fig. 6(e), dtype

is the data type of w which writes into Q̃:,𝑖 via a MatRefCol
created by .col_, and the innerProd function calculates
the inner product of two vectors.
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auto w = Phi.col<dtype>(cand_s[j*n+k]);
SB_LOOP: for (int p = 0; p + 1 < i; ++p)
w -= (Ri(p, i) = innerProd(Qi.col_(p), w))

/ Ri(p, p) * Qi.col_(p);
auto wp = Ri(i, i) = w.power(); /* l2-norm square */
Qi.col_(i) = w;
ri -= innerProd(w, ri) / wp * w;

(e) Corresponding C++ code.

Fig. 6. Hardware architecture and C++ code of the SUBBRANCH module.

MERGE (step 11 to 16). To seek the 𝑛 least residual
support sets in 𝑛2 candidates with unique indices forming

a, denoted as u arg min(𝑛)
𝑘

, ℓ1-norm is used instead of ℓ2-
norm for hardware simplicity. The corresponding matrices are
updated until step 15. MERGE is implemented with a multi-
layer sorting tree utilizing flames/sort.hpp. Each layer
contains sorting nodes that select the 𝑛 smallest values of its
input. Finally, the selected set is obtained by finding the set
with minimum residual of the 𝑛 lists.

SOLVE (step 17 to 18). It performs matrix-vector mul-
tiplication, backward substitution, and location mapping to
solve the LS problem. With simple Q * y, the matrix-vector
multiplication is auto implemented like that in the BRANCH
module, but with a multiplier array replacing the multiplexer
array. Backward substitution is then performed with a PE array
of size 𝐿 (a for loop in FLAMES), where PE is a 3-input,
1-output processing unit shown in Fig. 7 (* for multiplier
and += for ACC in FLAMES). Finally, x̃𝑙 is mapped to its
location s𝑙 via the mapping unit, implemented by assigning to
the corresponding elements using the operator [].

MATRIX-VECTOR MULTIPLICATION

PE
#1

PE
#2 · · · PE

#L
x̃0 x̃1 x̃𝐿−1R−1

0,0 R−1
1,1 R−1

𝐿−1,𝐿−1

x̃𝑙

−1

R0,𝑙

v0
R1,𝑙

v1
R𝐿−1,𝑙

v𝐿−1· · · BACKWARD

SUBSTITUTION

(Rx = v)

ACC
Q

y
v

Fig. 7. Hardware architecture of the SOLVE module (mapping unit omitted).

IV. EXPERIMENTAL RESULTS

A. Performance Verification

Fig. 8 compares the normalized mean square error (NMSE)
performance defined as E[∥x̂ − x∥2/∥x∥2] versus the signal-
to-noise ratio (SNR), where the OMPL list size is 𝑛 = 2. The
LS method is compared as a benchmark with no dimension
compression. OMPL outperforms OMP [19] using both ran-
dom binary (‘-R’ suffix) and designed binary sensing matrices
(‘-D’ suffix) in Fig. 8(a), where 𝑀 = 64, 𝑁 = 128, 𝐿 = 8. In
Fig. 8(b), 𝑁 varies among 24, 32 and 40, and 𝑀 = 16, 𝐿 = 2.
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Fig. 8. NMSE performance of: (a) OMP and OMPL, (b) OMPL under
different measurement size, (c) OMPL under different quantization schemes.
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In Fig. 8(c), we use hybrid quantization (HQ) with an average
of around 7 fixed-point bits (𝑀 = 16, 𝑁 = 32, 𝐿 = 2), which is
close to the performance of 10 bits unified quantization (UQ)
and float-point precision. In our HQ scheme, r, x̂, w, Q, R
have 8, 10, 3, 7, and 7 bits, respectively.

B. Hardware Implementation
The OMPL algorithm for compressed sensing is synthesized

and implemented for Xilinx Zynq-7000 ZC-706 with Vitis
HLS 2022.2 [9]. As a baseline, we implemented OMPL
following a general HLS design guideline [6], denoted as
traditional HLS (T-HLS). Compared with T-HLS, FLAMES-
assisted designs achieve 3.96× and 1.67× latency reduction
and 1.56× and 1.12× throughput/slice for the sequential and
parallel designs respectively with fewer than half lines of code,
with details in [11]. The FPGA resource consumption and
performance comparisons are listed in Table III. The parallel
design achieves higher throughput and lower latency than the
sequential design at the expense of higher overall resource
consumption.

TABLE III
FPGA RESOURCE AND PERFORMANCE COMPARISONS FOR 16 × 32

COMPRESSED SENSING WITH OMPL

Metric Sequential Parallel
T-HLS [6] FLAMES T-HLS [6] FLAMES

Slice 2,566 6,912 6,022 8,181
LUT 4,360 15,704 17,129 9,669
FF 5,958 22,114 10,899 39,170

DSP 81 36 75 5
BRAM 14 1 5 1

Latency [µs] 13.91 3.510 3.113 1.864
Frequency [MHz] 134 104 128 107

Throughput [Mb/s] 23.63 94.81 120.9 184.5
Throughput/slices
[Mbps/K slices] 8.819 13.72 20.08 22.55

Remarks: 1) DSPs and BRAMs are disabled in the RTL
synthesis phase. However, there is no direct way for the Vitis
HLS synthesis phase. 2) The overall resource consumption is
reflected by the number of slices. Certain types of resources
may differ due to complex HLS optimization strategies. 3)
The sequential and parallel designs only differ in the HLS
pragma/directive, so the OMPL algorithm can be readily
implemented as different architectures. Notably, the FLAMES
library excels at achieving high throughput in contrast to
HLS’s conservative optimization strategy. 4) The FLAMES
library significantly simplifies the hardware design with the
matrix-based syntax shown in Table I and [11]. Complicated
operations like branching and merging in OMPL are imple-
mented easily with matrix-based coding, significantly reducing
the complexity and difficulty of hardware design.

V. CONCLUSION

In this paper, we propose FLAMES for matrix-based linear
transformations, an open-source high-level synthesis library
implemented on Vitis HLS. FLAMES achieves hardware and
coding efficiency for fast algorithm implementations. More-
over, we demonstrate the effectiveness of FLAMES through
the OMPL algorithm, which verifies the library’s capability to
synthesize efficient hardware designs.
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