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Abstract—To improve wireless connectivity, reconfigurable
intelligent surface (RIS) offers an energy-efficient solution in
millimeter wave (mmWave) multi-input multi-output (MIMO)
systems. However, the achievable spectrum efficiency (SE) has
been limited by challenges associated with channel estimation
(CE) and hybrid beamforming design. To address these issues,
we propose an efficient data transmission (DT) scheme with two-
stage compressed sensing (CS)-based CE by exploiting the sparse
angular domain channel structure and pruning insignificant
components. Simulation results demonstrate that the proposed
method achieves reduction in pilot overhead and complexity of
CE, and higher SE of DT via iterative optimization.

Index Terms—Reconfigurable intelligent surface (RIS), chan-
nel estimation (CE), beamforming design, millimeter wave
(mmWave).

I. INTRODUCTION

IN WIRELESS communications, a reconfigurable intelligent
surface (RIS) serves as an efficient bridge reflecting sig-

nals [1], [2]. Thanks to the large number of reconfigurable
elements, RIS can significantly enhance spectrum efficiency
(SE) through reflection and beamforming designs in millimeter
wave (mmWave) multiple-input multiple-output (MIMO) sys-
tems [3], [4]. As considered by this letter, passive RIS is both
energy and cost-effective. However, due to the large number
of RIS elements, the required pilot overhead during channel
estimation (CE) as well as the computational complexity have
multiplied. Therefore, it is crucial to develop an efficient CE
method for channel state information (CSI) acquisition.

In RIS-assisted mmWave MIMO systems, the angular do-
main sparsity of the channel enables simplified CE by employ-
ing compressed sensing (CS), which significantly reduces the
pilot overhead [5]. However, high computational complexity
and limited performance issues still exist. To mitigate this,
[2] proposes a formulation incorporating beam and reflection
pattern designs. Moreover, the joint design of CS-based CE
scheme and beam patterns shows promise for enabling de-
manding technologies including holographic communications
[6]. Additionally, deep learning methods like deep denoising
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neural networks can further enhance the performance of CS-
based CE [7]. However, few existing studies have jointly
optimized CS-based CE and data transmission (DT), despite
the importance of this joint optimization. Firstly, designing a
beamforming scheme during DT does not require complete
CSI involving RIS, so the complexity of CE can be cut down
on. Secondly, existing hybrid beamforming and RIS reflection
design methods are based on perfect knowledge of the two
separate channels rather than the cascaded channel, which is
difficult to obtain with fully passive RISs.

This letter presents a joint design of CE and DT for
RIS-assisted mmWave MIMO systems to efficiently obtain a
beamforming design to maximize SE with cascaded CE. The
contributions are summarized as follows:

1) Exploiting angular domain sparsity, we propose an effi-
cient two-stage CS-based CE scheme for DT by pruning
insignificant CSI components.

2) Hybrid beamforming and RIS reflection patterns are
iteratively optimized for DT with high SE based on
partial knowledge of the cascaded channel.

3) Simulation results demonstrate the proposed method can
achieve high SE in DT with reduced complexity and
pilot overhead.

Notations: ȷ ≜
√
−1 is the imaginary unit, and Arg(·)

denotes the argument of a complex number. Boldface lower-
case a and upper-case A letters stand for a vector and a matrix,
respectively. [a]i is the i-th element of vector a. (·)T, (·)H, (·)∗
denote the transpose, the conjugate transpose, the conjugate.
|A| is the determinant of square matrix A. diag(a) denotes
the diagonal matrix with vector a on its diagonal. vec(A)
and vec−1

M,N (a) denote the vectorization of matrix A and the
reshaping of vector a into an M×N matrix. IM is the identity
matrix of size M ×M and OM×N is an M ×N zero matrix.

II. SYSTEM MODEL

In a RIS-assisted mmWave MIMO system, the uplink cas-
caded channel transmitting from the user to the base station
(BS) reflected on RIS is defined as

H ≜ Hrdiag(Ψ)Ht, (1)

where Ht ∈ CM×Nt and Hr ∈ CNr×M are the user–RIS and
RIS–BS channel in a narrowband geometry channel model,
respectively, which can be formulated according to [2], [5], [9].
Ψ ∈ CM×1 is the reflection vector of RIS equipped with Mx×
My =M uniform planar array (UPA) reflection elements. By
considering the angular domain sparsity of mmWave channels
due to the sparse scattering effect [10], the cascaded channel
H in (1) can be written as [2]:

H = VrΓrU
Hdiag(Ψ)UΓtV

H
t , (2)
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where the beamspace dictionaries for the user, BS, and RIS
Vt ∈ CNt×NG

t , Vr ∈ CNr×NG
r , and U ∈ CM×MG

are
comprised of NG

t , NG
r , MG = MG

x ×MG
y steering vectors

of uniformly distributed grids as in [2]. Γr and Γt are the
sparse beamspace channels representing physical angles, with
L1 and L2 non-zero elements corresponding to the number
of paths which are typically small in mmWave [10]. To
reduce the complexity and pilot overhead, CE is divided
into estimations of K consecutive reflection patterns (i.e., K
differently designed reflection vectors) [2]. The received signal
with the k-th (1 ≤ k ≤ K) reflection pattern during CE by
omitting the power coefficient can be expressed as

yk =
(
(ṼΨk)

T ⊗
(
(FT

k ⊗WH
k )(V

∗
t ⊗Vr)

))
j+ nk, (3)

where ⊗ denotes the Kronecker product, j ∈ CNG
t N

G
r M

G×1 is
a sparse vector that can be estimated by CS methods [5], [9],
nk is additive white Gaussian noise (AWGN) with variance
σ2, and Fk and Wk are the beam pattern matrices in [2]. Ṽ
is the first MG rows of Khatri-Rao product UT ⊚UH, whose
((p− 1)MG

y + q, (r − 1)My + s) element is

Ṽ({p, q}, {r, s})

=
1

M
exp

(
−2πȷ

(
(r − 1)(p− 1)

MG
x

+
(s− 1)(q − 1)

MG
y

))
.

(4)

Thus, according to [2], (3) is transformed to

yk = Qkxk + nk, (5)

where Qk ≜ (FT
k ⊗WH

k )(V
∗
t ⊗Vr) is the sensing matrix and

the sparse vector xk satisfies the following expression:

[xk]j =
∑MG

m=1
[(ṼΨk)

T]m[j]NG
t N

G
r ·(m−1)+j , (6)

for j = 1, 2, . . . , NG
t N

G
r . To further illustrate the transforma-

tion from (3) to (5), we define J as

J ≜ vec−1
NtNr,MG(j), (7)

whose i-th column ji is mutually orthogonal with each other.
By controlling the distribution of zero and non-zero elements
in ṼΨk, we can determine the way in which j1, j2, . . . , jM
are superimposed into xk. When only one element of ṼΨk

is non-zero as in [2], (6) can be further formulated as

xk =
∑L

i=1
[(ṼΨk)

T]sijsi , (8)

where si (i = 1, 2, . . . , L) is the position (index) of a non-zero
element in ṼΨk. Thus, xk is a linear superposition of jsi .

During DT, we utilize CSI obtained from CE to design a
reflection pattern Ψ that can differ from ones in the CE phase
to maximize SE. By utilizing L̃ ≤ L ≜ L1 × L2 estimated
paths, the channel H for DT can be approximated as

H = vec−1
Nr,Nt

((V∗
t ⊗Vr)Xβ) , (9)

where1 X ≜ [x1,x2, . . . ,xL̃] and coefficients β ≜
[β1, β2, . . . , βL̃]

T can be determined with the specified reflec-
tion vector Ψ:

ṼΨ =
∑L̃

l=1
βlṼΨl, (10)

1Without loss of generality, we denote the first L̃ estimations corresponding
to L̃ estimated paths for notational simplicity.

where Ψl is the reflection pattern corresponding to the l-th
path, which will be elaborated in Section III-B. Then (9) can
be further expressed as

H =
∑L̃

l=1
βlHl, (11)

where Hl ≜ vec−1
Nr,Nt

((V∗
t ⊗ Vr)xl). From (10) we can

obtain βl = Ṽ([̃i]l, :)Ψ, where ĩ is the position prior vec-
tor, which will be elaborated in Section III-A. With Ψ ≜
[ψ1, ψ2, . . . , ψM ]T, we can rewrite (11) as

H =
∑M

m=1
ψmNm, (12)

where Nm ≜
∑L̃
l=1 Ṽ([̃i]l,m)Hl. When NRF

r = NRF
t and

NB
r = NB

t , SE R can be approximated as

R ≈ log2

∣∣∣∣ 1

NB
t

R−1WHHFFHHHW

∣∣∣∣ , (13)

where R ≜ σ2WHW. To reduce the hardware implemen-
tation complexity, we adopt hybrid beamforming [3], [8] as
W ≜ WRFWBB, F ≜ FRFFBB, where WRF ∈ CNr×NRF

r

and FRF ∈ CNt×NRF
t represent the analog beamforming,

WBB ∈ CNRF
r ×NB

r and FBB ∈ CNRF
t ×NB

t represent the
digital beamforming, and NRF

t and NRF
r are the number of

radio frequency (RF) chains at the user and BS, respectively.

III. PROPOSED METHOD

A. Channel Prior Acquisition

To reduce overall pilot overhead and computational com-
plexity, the first stage of CE is utilized to acquire prior infor-
mation for the second stage of CE. Though the formulation
in [2] already simplifies the CS problem by designing M
reflection patterns, only a few of them contribute to the real
CSI due to the sparsity. Therefore, it is possible to filter
out insignificant reflection patterns by obtaining the essential
prior including rough path directions. Thus, around L ≪ M
reflection patterns are required for accurate channel estimation.

The question is how to efficiently gain the big picture
of the RIS-assisted transmission system with only a limited
number of pilot overhead. Thus, the chosen reflection vectors
should contribute to each element of j evenly and distinguish
them as much as possible, posing constraint to ṼΦn for
1 ≤ n ≤ N , where N is the number of reflection patterns used
in the first stage of CE. Φn denotes the n-th reflection vector
in the first-stage CE, which is different from the reflection
vector in the second-stage CE (Ψl) in notation. To meet this
constraint, we employ the truncated discrete Fourier transform
(DFT) pattern, characterized by a unit amplitude and evenly
distributed phases, denoted as ṼΦn = T(:, n), where T is an
M ×M DFT matrix. Clearly, ṼΦn satisfies

Arg

(
[ṼΦ2]i

[ṼΦ1]i

)
=

2π

MG
(i− 1), (14)

for i = 1, 2, . . . ,MG. The maximum phase error (14) allows
is π

MG , which can result in significant pilot overhead when
the number of RIS elements is large. To further optimize
the design, dimension reduction can be applied by separately
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considering the RIS’s planar array in the x and y dimensions.
With ṼΦn for the RIS having M = Mx × My elements
and considering (4), we can adopt the following dimension-
reduced design 

Φ3n−2 = IM (:, nMy − 1),

Φ3n−1 = IM (:, nMy),

Φ3n = IM (:, nMy + 1),

(15)

which forms (Mx − 1) L-shape groups across the RIS UPA.
Importantly, this design uses the minimum of 3 patterns (one
L-shape group), since it requires at least 3 to obtain an
estimation on 2 dimensions. And the multiple-group scenario
reduces errors by averaging the results of repeated single-
group processes. By using this dimension-reduced design
which achieves optimal resolution, the upper limit of allowable
error is increased to min{ π

MG
x
, π
MG

y
} enabled by each L-shaped

design. This can be expressed as
Arg

(
[ṼΦ2]i

[ṼΦ1]i

)
−Arg

(
[ṼΦ2]i−1

[ṼΦ1]i−1

)
=

2π

MG
x

,

Arg

(
[ṼΦ3]i

[ṼΦ2]i

)
−Arg

(
[ṼΦ3]i−MG

x

[ṼΦ2]i−MG
x

)
=

2π

MG
y

.

(16)

Therefore, x, y two-dimensional information [ix]l, [iy]l can be
calculated as

[ix]l = argmin
1≤i≤MG

x

∣∣∣∣Arg

(
[x2]sl
[x1]sl

)
− 2π

MG
y

i

∣∣∣∣ ,
[iy]l = argmin

1≤j≤MG
y

∣∣∣∣Arg

(
[x3]sl
[x2]sl

)
− 2π

MG
x

j

∣∣∣∣ , (17)

where sl is the position of non-zero elements in xn, and xn
is estimated using (5) and (6). Therefore, the i-th element of
the position prior vector is given as

[i]l = [ix]lM
G
y + [iy]l, (18)

where [i]l directly corresponds to the required estimation of
the reflection patterns in the second stage as

Ψl = Υ(:, [i]l), (19)

where Υ = MG

M Ṽ† and Ṽ† is the pseudo-inverse of Ṽ.
The above-mentioned method can also be extended to a

fully-on scheme for RIS, i.e., the reflection vector Φn is a
phase shift vector and each element has unit amplitude. Similar
to (15), reflection vectors can be designed as

[Φ1]iMy+j = exp

(
2πȷ

(
3

2Mx
i+

3

2My
j

))
,

[Φ2]M−iMy−j = exp

(
2πȷ

(
3

2Mx
i− 3

2My
j

))
,

[Φ3]iMy+j = exp

(
2πȷ

(
3

2Mx
i− 3

2My
j

))
,

(20)

where 1 ≤ i ≤MG
x and 1 ≤ j ≤MG

y . Similar to (17),
[ix]l = argmin

1≤i≤MG
x

∣∣∣∣∣
∣∣∣∣ [x2]sl
[x1]sl

∣∣∣∣− [ṼΦ2]iMG
y

[ṼΦ1]iMG
y

∣∣∣∣∣ ,
[iy]l = argmin

1≤j≤MG
y

∣∣∣∣∣
∣∣∣∣ [x3]sl
[x1]sl

∣∣∣∣− [ṼΦ3]j

[ṼΦ2]j

∣∣∣∣∣ .
(21)

Thus [i]l can be computed with (18).
In the first stage of CE, it is also possible to obtain the

power prior of each path as

[p]l ∝ |[x]sl |
2
, (22)

where x =
∑N
n=1 xn. Notably, designs in (15) and (20) can

be readily extended to cases where N > 3. This is done by
replicating their structure with element index shifts, exploiting
the cyclic symmetry property.

B. Efficient Channel Estimation With Prior

Using the power prior of each path obtained in (22), it is
feasible to estimate the L paths from strongest to weakest in
the second stage of CE. In practice, estimating all L paths
is unnecessary, as some paths are negligible for beamforming
design, which will be elaborated in Section III-C. Let ĩ be
the sorted position prior vector with descending power prior.
Therefore, with the position prior ĩ, estimation of the L̃ paths
with (5) can be simplified to

yl = Q̃lx̃l + nl, (23)

where Q̃l ∈ CNB
t N

B
r ×L̃, x̃ ∈ CL̃×1, Q̃l(:, i) = Ql(:, si) and

[x̃l]i = [xl]si . The reflection vector Ψl can be expressed as
(19). Since ĩ may not be accurate enough, i.e., with the prior
grid potentially offset from the real non-zero index. Therefore,
multiple searches of the path in the neighboring grids need to
be conducted. To enable this, L̂ > L̃ patterns are employed
in the second-stage CE, among which L̃ patterns are effective
for obtaining CSI. This is facilitated by ṼΨl in the second
stage of CE which has only one non-zero element, ensuring
the sparse character of x̃k [2, Fig. 1]. The overall process of
CE is summarized in Fig. 1.

. . . . . . . . .
s1 s2 s3s4

◦
prior design

1st stage 2nd stage DTprior grid offset

. 1st stage effective ineffective 2nd stage skipped from [2] ◦ designed DT

Fig. 1. Overall process of CE. Each square represents a reflection pattern.

The computational complexity comparison for a widely
employed CS algorithm orthogonal matching pursuit (OMP)
[11] is shown in Table I, where L′ is the sparsity of xl, and
Q, Q′ and Q1,2 are the average number of pilots for each
reflection pattern in [5], [2] and the first/second stage of CE
in this work. The overall complexity of the proposed method
consists of two parts: O(LQ1NNtNr) for the first stage,
and O(L′Q2L̂L̃) for the second stage. Here, N represents
the number of reflection patterns estimated in the first stage
(N ≪ M ), L̂ denotes the number of reflection patterns
estimated in the second stage (L̂ ≪ min{NtNr,M}), and L̃
is the dimension of variable x̃l with L̃ < L. It clearly shows
the reduced complexity compared with existing works [2], [5].

C. Joint Hybrid Beamforming Design

We employ an iterative approach to obtain an optimized
reflection and beam pattern for DT, where it initially solves
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TABLE I
COMPUTATIONAL COMPLEXITY OF OMP-BASED FORMULATIONS

Sparse Channel Formulation Computational Complexity
Eq. (3) from [5] O(LQMNtNr)

Eq. (5) from [2] O(L′Q′MNtNr)

This Work (2 Stages) O(LQ1NNtNr + L′Q2L̂L̃)

L′ < L̃ < L ≪ NtNr, L̂ ≪ min{NtNr,M}, Q2 ≪ Q′ < Q1 ≪ Q.

the reflection pattern optimization problem using fixed hybrid
beamforming. Subsequently, the optimized hybrid beamform-
ing design using a fixed reflection pattern is obtained. This
process is iterated until convergence. When NRF

r ̸= NRF
t

and/or NB
r ̸= NB

t , (13) is transformed into

R ≈ NB
r log2

1

NB
t σ

2
+ log2

∣∣WH
BBW

H
RFH

× FRFFBBF
H
BBF

H
RFH

HWRFWBB

∣∣, (24)

and with the fixed analog beamforming, we can formulate the
reflection pattern optimization as

max
Ψ

{
log2

∣∣WH
BBW

H
RFHFRFFBBF

H
BBF

H
RFH

H ×

WRFWBB

∣∣}, s.t. Ψ ≜ [ψ1, ψ2, . . . , ψM ]T.
(25)

The reflecting elements are refined one by one, optimizing ψi
while fixing the other (M − 1) elements for 1 ≤ i ≤M . (25)
is further written as

log2
∣∣WH

BBW
H
RFHFRFFBBF

H
BBF

H
RFH

HWRFWBB

∣∣
(a)
= log2

∣∣∣(ψiMi +
∑

1≤m≤M,m̸=i

ψmMm

)(
ψH
i M

H
i +

∑
1≤m≤M,m̸=i

ψ∗
mMH

m

)∣∣∣
(b)
= log2

∣∣Z−1
∣∣+ log2

∣∣∣INB
r
+ Z−1ψiMi

∑
m=1,m ̸=i

ψ∗
mMH

m

+ Z−1
(∑

1≤m≤M,m̸=i

ψmMm

)
ψ∗
iM

H
i

∣∣∣
(c)
= log2

∣∣Z−1
∣∣+ log2

∣∣INB
r
+ψiZ

−1min
H
i +ψ

∗
i Z

−1nim
H
i

∣∣ ,

(26)

where (12) is used in (a) and Mm ≜ WH
BBW

H
RFNmFRFFBB.

In (b) the property |AB| = |A||B| is employed
for square matrices A and B, and Z ≜ MiM

H
i +

(
∑

1≤m≤M,m̸=i ψmMm)(
∑

1≤m≤M,m̸=i ψ
∗
mMH

m). In (c)
Mi ≜ UiΣiVi by using singular value decomposition
(SVD) where the first diagonal element of Σ is the
dominant element, thus Σi ≈ m̃ñH and mi ≜ Uim̃,
nH
i ≜ ñHVi

∑
1≤m≤M,m̸=i ψ

∗
mMH

m. Therefore, the
optimization problem is transformed into

max
ψi

{
log2

∣∣INB
r
+ ψiZ

−1min
H
i + ψ∗

i Z
−1nim

H
i

∣∣} ,
s.t. ψi = exp(ȷθi).

(27)

With Z−1 = (Z−1)H, |INB
r

+ ψiZ
−1min

H
i | and |INB

r
+

ψ∗
i Z

−1nim
H
i | have the same maximum point. Therefore, (27)

is simplified to

max
ψi

{
log2

∣∣1 + 2ψin
H
i Z

−1mi

∣∣} ,
s.t. ψi = exp(ȷθi),

(28)

where the property |I+AB| = |I+BA| is used. Therefore,
θi = −Arg(nH

i Z
−1mi). With an optimized Ψo, the corre-

sponding channel Ho can be expressed using SVD as

Ho = VoΣoU
H
o , (29)

where Vo ∈ CNr×Nr and Uo ∈ CNt×Nt are unitary ma-
trices and Σo is a rectangular diagonal matrix consisting of
descending singular values. With the sparse nature of mmWave
channels, the cascaded channel can be approximated by

Ho ≈ ṼoΣ̃oŨ
H
o , (30)

where Ṽo ≜ Vo(:, 1 : NB
t ), Ũo ≜ Uo(:, 1 : NB

r ), Σ̃o ≜
Σo(1 : NB

t , 1 : NB
r ). Therefore, the optimized unconstrained

beamformers for H can be given by Fo = Ṽo,Wo = Ũo and
Fo and Wo can be easily formulated by hybrid beamforming
[3], [8]. The final beamforming design can be obtained by
iterating operations in (28) and (30).

D. Pilot Allocation Analysis for CE
As a two-stage method, it is significant to achieve a tradeoff

between the allocated pilots in the first and second stages. In
the CE sense, for a given L̃, the optimal pilot allocation can
be expressed as

min
N,Q1,2

{Q1 ·N +Q2 · E[L̂]}, (31)

where the average number of reflection patterns in the second
stage can be expressed as

E[L̂] = L̃+

L̃∑
l=1

⌊
2
|er(l ;N,Q1)|

α

⌋
, (32)

where er(l ;N,Q1) denotes the prior grid offset in the first
stage for the l-th path, which depends on channel conditions
(number of scatters, average signal-to-noise ratio (SNR), etc.)
as well as N and Q1. Larger N and Q1 contribute to
smaller er(l ;N,Q1). α denotes the first-stage allowable error
explained in Section III-A. Therefore, (31) is transformed to

min
N,Q1,2

Q1 ·N +Q2

L̃+ 2
L̃∑
l=1

⌊
2
|er(l ;N,Q1)|

α

⌋, (33)

which is a multi-variable optimization problem that can be
solved according to the specific applied scenarios. For a
specific scenario with Q2 fixed, the total pilot overhead is
minimized by solving (33) to obtain Q1:

∂
∑L̃
l=1

⌊
2 |er(l ;N,Q1)|

α

⌋
∂Q1

= − N

Q2
, (34)

where |er(l ;N,Q1)| can be readily obtained via simulation.
Then, Q1 is selected as the one corresponding to the smallest
function value among all the stationary points obtained from
(34). Moreover, L̃ in (34) is constrained by the SE maximiza-
tion sense as

L̃ ≥ NB
t N

B
r , (35)

so that the approximate performance limit in (30) can be
achieved. Generally, when the number of pilot overhead is
small, focusing on estimating a few dominant paths with
higher power yields better performance.
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Fig. 2. Simulation results of SE in relation to different CE schemes with the OMP algorithm. (a) Different Q1N with SNR = 10dB. (b) Different L̃ with
SNR = 10dB. (c) SE v.s. SNR with pilot overhead 200.

IV. SIMULATION RESULTS

In this section, simulations are conducted to evaluate the
performance of different pilot allocation schemes and different
number of estimated paths for channel estimation. The OMP
algorithm is employed, and the system parameters are Nt =
NG
t = 8, Nr = NG

r = 16, NB
t = NB

r = 2, Mx = My =
MG
x =MG

y = 8 and L1 = L2 = 3.
The proposed method is compared with existing work

including [2], which designs the beam and reflection pattern
in the CE stage. As shown in Fig. 2, compared with [2],
our proposed method can achieve approximately 40%∼ 50%
pilot reduction to achieve the same SE. Our method has more
than 30% SE higher than [5] with low pilot/SNR, and the
result is not shown in Fig. 2 due to a large margin. Notably,
inadequate CE can significantly impact DT SE performance
which results from poor divergence. Fig. 2(a) shows the
relationship between varying Q1N and the obtained SE with
different pilot overheads, when SNR is 10 dB. With a lower
required SE, moderately reducing the pilot overhead in the
first stage (for example Q1N = 60) can effectively reduce
the total pilot overhead. When the total number of pilot
overhead is relatively large, the impact of different pilot
allocation schemes on SE is negligible, which implies the
stability of the proposed two-stage method. Fig. 2(b) depicts
the relationship between different L̃ and SE with different
pilot overheads and SNR = 10dB, showing that reducing
the number of estimated paths while satisfying (35) can cut
down the total pilot overhead. The relationship between SNR
and SE is shown in Fig. 2(c) with 200 total pilots, where the
received power is assumed to be the same among all SNRs.
It can be observed that larger L̃ or smaller Q2 provides better
performance in high SNRs. In summary, simulation verifies
the effectiveness of the proposed method and the flexibility in
pilot allocation for CE. Adjustable parameters L̃, N , and Q1,2

further contribute to flexibility, making the proposed method
applicable to multiple scenarios.

V. CONCLUSION

In this letter, we propose the efficient joint design of channel
estimation and data transmission for RIS-assisted mmWave

MIMO systems. Simulation results demonstrate that, with the
same SE, the proposed method can reduce the pilot overhead
by 40%∼ 50% compared to existing methods. Moreover, this
method can adapt to various environments by adjusting the
pilot allocation and the number of estimated paths.
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