
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

presented at IEEE ASICON 2023 (DOI: 10.1109/ASICON58565.2023.10396119)

Automatic Timing-Driven Top-Level Hardware
Design for Digital Signal Processing

Wuqiong Zhao, Changhan Li, Zhenhao Ji, You You, Xiaohu You, and Chuan Zhang
1Lab of Efficient Architectures for Digital-communication and Signal-processing (LEADS)

2National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
3Purple Mountain Laboratories, Nanjing, China

Email: {wqzhao, chzhang}@seu.edu.cn

Abstract—Though hardware auto generators can efficiently
generate architectures of different design metrics based on
generation formulas, top-level design for digital signal processing
remains challenging. In this paper, we propose an automatic
timing-driven top-level hardware generation scheme which in-
tegrates top-level timing arrangement, code generation and fast
evaluation to further alleviate the heavy workload of hardware
design for digital systems. To demonstrate the effectiveness of
our proposed scheme, a channel impulse response estimator is
implemented. It is shown that our scheme can explore design
space and optimize hardware architecture automatically with
different design constraints.

Index Terms—Hardware design, top-level design, digital signal
processing (DSP), wireless communications.

I. INTRODUCTION

In recent years, application specific integrated circuits
(ASIC) are being used in various applications such as base-
band signal processing and image processing. Hardware design
for digital signal processing (DSP) is significant for efficient
ASIC implementation of digital systems [1].

For a specific digital signal processing system, there are
various implementation strategies. Choosing among different
strategies can be challenging due to the large design space and
complicated design evaluation process. Traditionally, hardware
designers rely on experience to determine the implementation
strategy, and optimize the architecture by going through mul-
tiple design iterations, which is highly time-consuming.

To address the issue, researchers have proposed auto gen-
erators for hardware implementation [2], [3]. Auto genera-
tors use a formula-based register transfer level (RTL) code
generation scheme, supporting different very large-scale inte-
gratation (VLSI) design techniques and exploiting algorithm
characteristics. With the auto generator, hardware designers
can cover feasible design space without having to write RTL
code for each specific case. Additionally, auto generator en-
ables hardware evaluation and optimization based on formula,
which greatly shortens the design period by sparing hardware
designers from having to go through long design iterations
for hardware optimization. Automatic quantization with deep
reinforcement learning proposed in [4] presents an automatic
approach for hybrid quantization scheme optimization, which
is efficient especially combined with auto generators.

We propose an automatic top-level hardware optimizing
scheme based on auto generators, which integrates RTL code

generation, fast evaluation and top-level timing arrangement.
With our proposed scheme, hardware designers no longer
have to worry about the complicated timing constraints with
different design parameters, and can do RTL writing, evalu-
ation and optimization in the same coding environment. Our
scheme could be seen as an enhanced realization platform for
auto generators, providing developer-friendly and user-friendly
interfaces with automatic optimizations.

Other automatic design attempts such as high-level synthesis
(HLS) [5] have been made. HLS enables designers to design
hardware using software language, which greatly reduces
design period and difficulty, but suffers from inefficient hard-
ware implementations. Works like [6], [7] propose automatic
ways of implementing the retiming technique based on data
flow graphs (DFG) which greatly shortened the critical path
of the architecture. These works mainly focus on detailed
optimization of architectures, and could be combined with our
scheme which focus on top-level designing.

This paper discusses the automatic top-level hardware de-
sign for digital signal processing. The main contributions are
summarized below:

1) We propose an automatic scheme for top-level hardware
design, which can optimize hardware in a gradient-based
way by iteratively adjusting parameters;

2) A hardware description language AHDW is designed
to apply timing arrangement, fast evaluation and code
generation automatically;

3) A channel impulse response (CIR) estimator for mil-
limeter wave (mmWave) systems is implemented via
AHDW with auto top-level design as a demonstration
of the proposed methods.

II. PRELIMINARIES

Auto generators can use VLSI design techniques such as
folding and unfolding, numerical strength reduction, systolic
design, and pipeline design to achieve trade-offs among vari-
ous design metrics, such as area efficiency, energy efficiency,
and power density. Basically, auto generators implement the
following three steps:

1) Derive formula representation of the VLSI architecture
of the selected algorithm;

2) Convert formula into RTL code through a generation
script or program;

https://doi.org/10.1109/ASICON58565.2023.10396119


3) Obtain hardware implementation through electronic de-
sign automation (EDA) tools.

The formula representation of hardware architecture is intro-
duced in [8]. To achieve efficient implementation, the formula
should be concise, while fully exploiting algorithm character-
istics. An effective approach of formula derivation is to break
the architecture into submodules, and rearrange them in top-
level. However, the top-level design can be challenging due to
complicated timing constraints, which impose difficulties for
hardware designers. Furthermore, the formula often contains
various design parameters such as parallelism to enable design
trade-offs. Optimizing the design parameters can be very
challenging due to the large number of parameters. Therefore,
we propose an automatic scheme for top-level hardware design
including top-level timing arrangement, parameter optimizing
and RTL code generation.

III. PROPOSED AUTO DESIGN METHODS

A. Timing Arrangement

The basic timing arrangement is shown in Algorithm 1.
More complicated scenarios will be discussed in section IV.

Algorithm 1: Basic Timing Arrangement
Input: Timing Information, Timing Constraint,

Hardware Architecture
1 Generate graph representation of the architecture;
// Timing-Oriented Optimization

2 while timing constraint not satisfied do
3 Find deciding path 𝑆 concerning timing constraint;
4 repeat
5 Adjust one parameter in 𝑆;
6 until Updated 𝑆 no longer deciding path;
7 end
// Area-Oriented Optimization

8 foreach module not on deciding path do
9 Adjust parameters for smaller areas while

maintaining timing constraint-compliant;
10 end

Output: Constraint-Compliant Hardware Design

Before performing timing optimization, it is necessary to
represent the hardware architecture as a weighted directed
graph in step 1. A comprehensive understanding of the
topology is crucial for optimization purposes, as it enables
module reuses and facilitates the deployment of parallelism
and pipelining.

The main process consists of two steps: timing-oriented
optimization and area-oriented optimization. These processes
are illustrated in Fig. 1.

In timing-oriented optimization, all paths of the design are
explored, and respective timing metrics such as latency and
pipeline interval are calculated. The deciding path is then
determined as the path with the longest latency or pipeline
interval. It is worth noting that the timing considered here
is based on clock cycles, different from the critical path,

Deciding Path
Targeted Timing

Ti
m

in
g

M
et

ric Paths

Timing-Oriented Area-Oriented

Fig. 1. Illustration of timing arrangement.

which is the longest physical path from register to register.
Parameters along the deciding path are adjusted to meet the
timing requirement. This process is repeated until all paths in
the design comply with the timing requirement.

After timing-oriented optimization, area-oriented optimiza-
tion can be performed to relax certain parameters and reduce
the area while maintaining the hardware’s adherence to the
timing constraint.

For latency optimization, the deciding path is the longest
path in the weighted graph. When considering throughput
optimization, the pipeline interval becomes a primary factor.
Therefore, the deciding path encompasses the submodule with
the maximum pipeline interval.

B. Fast Evaluation

In B5G/6G wireless communications systems, the hardware
architecture for baseband signal processing could be extremely
complicated, making thorough evaluation of which highly time
consuming. Therefore, fast evaluation of hardware designs are
critical for design space exploration. Since the optimization of
reconfigurable parameters is based on (smart) searching, we
have to determine the area metric efficiently. Fast evaluation
does not rely on synthesis but is based on the rough estimation
of each module and calculates the total area. The rough
estimation can be achieved by synthesizing basic modules with
certain parameters, or by expert experience.

C. Gradient-Based Optimization

Since the overall quality of a generated hardware design
encompasses multiple aspects such as performance, power,
area, throughput, and latency, it is challenging to define a
single optimal hardware design. Consequently, it is more
practical to obtain a set of Pareto-optimal hardware designs
for users to choose from in this multi-objective optimization
problem.

In general, considering an objective function 𝑓 , the require-
ments for the top-level hardware design can be represented as
the following optimization problem:

max 𝑓 (𝑡𝐷 , 𝑎𝐷), s.t. 𝑡𝐷 ∈ T , 𝑎𝐷 ∈ A, (1)

where 𝑡𝐷 and 𝑎𝐷 are the timing and area parameters for
design 𝐷, respectively, and T and A are the constraint sets
for timing and area, respectively. For the sake of analysis
convenience, the function 𝑓 is assumed to have a gradient for



the design 𝐷. Unlike gradient descent, which aims to minimize
the loss function [9], the parameters 𝑡𝐷 and 𝑎𝐷 in (1) are
correlated, and the direction with the maximum gradient is
often infeasible for a hardware module. When updating the
design to 𝐷′, the changes in timing and area parameters are
denoted as:

Δ𝑡 ≜ 𝑡𝐷′ − 𝑡𝐷 , Δ𝑎 ≜ 𝑎𝐷′ − 𝑎𝐷 . (2)

To increase the objective function 𝑓 , the changes need to
satisfy

∇ 𝑓 (𝑡𝐷 , 𝑎𝐷) ·
[
Δ𝑡

Δ𝑎

]
> 0, (3)

where · is the dot product. When Δ𝑡 ≠ 0, indicating that the
design change affects the deciding path, (3) can be organized
assuming Δ𝑡Δ𝑎 < 0 as follows:

− Δ𝑡

Δ𝑎
>

𝜕 𝑓 (𝑡𝐷 ,𝑎𝐷 )
𝜕𝑡𝐷

𝜕 𝑓 (𝑡𝐷 ,𝑎𝐷 )
𝜕𝑎𝐷

, if Δ𝑡 < 0,Δ𝑎 > 0,

− Δ𝑡

Δ𝑎
<

𝜕 𝑓 (𝑡𝐷 ,𝑎𝐷 )
𝜕𝑡𝐷

𝜕 𝑓 (𝑡𝐷 ,𝑎𝐷 )
𝜕𝑎𝐷

, if Δ𝑡 > 0,Δ𝑎 < 0.

(4)

Thus, parameters for a particular module can be optimized for
either timing or area, based on (4), by comparing −Δ𝑡/Δ𝑎 with
a threshold.

IV. IMPLEMENTATION AND DISCUSSIONS

A. Implementation

Summarizing the proposed methods as well as hardware
auto generation, a hardware description language AHDW
(Auto HarDWare) is developed, where its overall design is
depicted in Fig. 2, combining timing arrangement, automatic
generation and fast evaluation.

AHDW

Automatic
Generation

Timing
Arrangement

Fast
Evaluation

Eval.
𝑓 (𝑥)

Fig. 2. Overview of AHDW.

AHDW is a configurable framework that follows a modular
structure similar to a hardware description language. It com-
prises a top module and functional submodules, where the top
module describes the entire algorithm, and each submodule
represents an operation in the formula. AHDW offers support
for high-level behavior descriptions and Verilog syntax simul-
taneously, enabling designers with extensive freedom to meet
custom design objectives.

The main challenge lies in obtaining timing information and
implementing optimizations in a programmatic manner. We

base our directed graph implementation on the C++ library in
[10]. Fig. 3 illustrates an example AHDW module declaration,
which includes a configurable parameter 𝑝 and ports A, B
(disaggregated), and C. Timing data is provided by specifying
the arrival clock for incoming data (tin) and the clock for
the next frame (tnext). A time table can be used as a visual
representation of timing information, as shown in Fig. 3(c).
This table captures the occupied clocks, allowing for clever
arrangement of timing by utilizing pipelining techniques.

MODULE module_{{ p }} // p is a parameter
p = PARAM min=2 max=8 step=2
port_A = PORT in 8 tin=0 tnext=p+1
i = LOOP from=1 to=p
port_B{{ i }} = PORT in tin=i tnext=i+6

END
port_C = PORT out p tout=2*p+7-b tnext=p+4-b
// module implementations ...

END

(a) AHDW code.

module_2

A

B1

B2

C

8

2

(b) Corresponding module representation with 𝑝 = 2.

1 2 3 4 5 6 7 8 9 10 11 12Port
A[7:0]

B1
B2

C[1]
C[0]

Occupied

(c) Time table of the module with 𝑝 = 2.

Fig. 3. AHDW module declaration example.

B. Discussions

During the early concept design phase, there are several
aspects in which the AHDW compiler implementation can be
further extended:

1) Dynamic Timing: In contrast to the assumption made
in Section III-A, where all timing information is assumed to
be known, many modules involve dynamic timing. This means
that the latency and/or pipeline interval are not predetermined.
In such cases, handshake signals can be utilized instead of
inserting registers to handle the dynamic timing requirements.

2) Loop: The treatment of loops in the architecture can be
summarized as the process of replica and merging. Different
hardware resources are allocated for each iteration, but when
the timing requirements are met, certain modules can be
automatically merged. If the iteration loop is regular or the
timing requirements are not tight, there will be no additional
hardware cost due to replica.

3) Reconfigurable Modules: The proposed method can also
be applied to designs that employ reconfigurable modules.
As long as timing information is provided, reconfigurable



modules are considered as distinct functional modules but can
be merged during the area-oriented optimization process.

4) Fast Compilation Mode: To expedite the top-level design
process for large hardware architectures, a fast compilation
mode can be introduced. This mode significantly reduces the
design space by making more radical assumptions and pruning
less likely designs at an earlier stage.

V. DEMONSTRATION

We demonstrate the effectiveness of our proposed top-level
hardware design method by implementing Golay sequence
aided CIR estimation for mmWave frequency-selective sys-
tems. This technique is utilized in IEEE Standard 802.11ad
[11] for wireless local area network (WLAN). A real-time
testbed for this purpose is implemented in [12]. Additionally, a
channel estimator for wireless personal area networks (WPAN)
is proposed in [13], which includes a parallel design of Golay
correlators.

The Golay sequence aided CIR estimation can be recon-
figured, similar to other auto-generated hardware designs.
Among the important parameters, parallelism holds significant
importance. AHDW facilitates the automatic generation of the
top-level design of the CIR estimator for different parallelism
settings. Furthermore, it allows for intelligent reuse of Golay
correlators among I/Q components, providing the option to
trade-off latency for a smaller area.

Fig. 4 presents the FPGA synthesis results and fast evalua-
tion results using Vivado 2022.2 on Zynq UltraScale+ RFSoC
ZCU111 [14]. The results demonstrate different parameter
settings and hardware arrangements, showcasing the trade-
off between area and latency, with a Pareto front. The fast
evaluation values are normalized to the synthesis results.

24 25 26 27 28 29 210

20

40

60

Pareto Front

Latency [cc]

k
Sl

ic
es

Synthesis Result
Fast Evaluation

Fig. 4. Comparisons of different top-level designs for Golay sequence aided
CIR estimation.

VI. CONCLUSION

In this paper, we propose an effective automatic top-level
hardware design method that combines the graph features of
the overall hardware architecture and specific module timing
characteristics to offer efficient solutions. To implement our
proposed method, we developed a hardware generation lan-
guage AHDW that serves as a platform for auto generator
developing and hardware optimizing. Furthermore, we demon-
strates the effectiveness of our method by implementing a
Golay sequence aided CIR estimator with AHDW. The current
design is only at its early age and has much potential to be
further enhanced. Detailed implementation optimizing is left
for future work.

REFERENCES

[1] Y. Fu, K. Chen, W. Song, G. He, S. Shen, H. Wang et al., “A
DSP-purposed reconfigurable acceleration machine (DREAM) for high
energy efficiency MIMO signal processing,” IEEE Trans. Circuits Syst.
I, vol. 70, no. 2, pp. 952–965, Feb. 2023.

[2] C. Ji, Y. Shen, Z. Zhang, X. You, and C. Zhang, “Autogeneration of
pipelined belief propagation polar decoders,” IEEE Trans. VLSI Syst.,
vol. 28, no. 7, pp. 1703–1716, Jul. 2020.

[3] Z. Zhong, W. J. Gross, Z. Zhang, X. You, and C. Zhang, “Polar compiler:
Auto-generator of hardware architectures for polar encoders,” IEEE
Trans. Circuits Syst. I, vol. 67, no. 6, pp. 2091–2102, Jun. 2020.

[4] Y. Ge, Z. Ji, Y. Huang, Z. Zhang, X. You, and C. Zhang, “Automatic
hybrid-precision quantization for MIMO detectors,” IEEE Trans. Signal
Process., vol. 71, pp. 1039–1052, Mar. 2023.

[5] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there yet?
a study on the state of high-level synthesis,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 38, no. 5, pp. 898–911, May 2019.

[6] H. Mehra and M. S. Bhat, “High level optimization methodology for
high performance DSP systems using retiming techniques,” in Proc.
IEEE Dist. Comput. VLSI Electr. Circ. Robot. (DISCOVER), Aug. 2018,
pp. 163–168.

[7] S. Jalaja and A. M. V. Prakash, “Design of low power based VLSI
architecture for constant multiplier and high speed implementation using
retiming technique,” in Proc. IEEE Int. Conf. Microelectron. Comput.
Commun. (MicroCom), Jan. 2016, pp. 1–6.

[8] M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer et al.,
“SPIRAL: Code generation for DSP transforms,” Proc. IEEE, vol. 93,
no. 2, pp. 232–275, Feb. 2005.

[9] S. Ruder, “An overview of gradient descent optimization algorithms,”
2016, arXiv:1609.04747. [Online]. Available: https://arxiv.org/abs/1609.
04747

[10] W. Zhao. (2023, Apr.) DG-CPP: Directed graph in C++. [Online].
Available: https://dg-cpp.tvj.one

[11] IEEE Standard for Information technology – Telecommunications and
information exchange between systems – Local and metropolitan area
networks – Specific requirements – Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications –
Amendment 3: Enhancements for Very High Throughput in the 60 GHz
Band, IEEE Std. 802.11ad, 2012.

[12] J. O. Lacruz, R. R. Ortiz, and J. Widmer, “A real-time experimentation
platform for sub-6 GHz and millimeter-wave MIMO systems,” in Proc.
ACM Int. Conf. Mob. Syst. Appl. Serv., Jun. 2021, pp. 427–439.

[13] W.-C. Liu, F.-C. Yeh, T.-C. Wei, C.-D. Chan, and S.-J. Jou, “A digital
Golay-MPIC time domain equalizer for SC/OFDM dual-modes at 60
GHz band,” IEEE Trans. Circuits Syst. I, vol. 60, no. 10, pp. 2730–
2739, Oct. 2013.

[14] AMD. (2023) Zynq UltraScale+ RFSoC ZCU111 evaluation kit.
[Online]. Available: https://www.xilinx.com/products/boards-and-kits/
zcu111.html

https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://dg-cpp.tvj.one
https://www.xilinx.com/products/boards-and-kits/zcu111.html
https://www.xilinx.com/products/boards-and-kits/zcu111.html

	Introduction
	Preliminaries
	Proposed Auto Design Methods
	Timing Arrangement
	Fast Evaluation
	Gradient-Based Optimization

	Implementation and Discussions
	Implementation
	Discussions
	Dynamic Timing
	Loop
	Reconfigurable Modules
	Fast Compilation Mode


	Demonstration
	Conclusion
	References

