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Abstract—Reconfigurable intelligent surface (RIS) is a rev-
olutionary technology that can be applied in millimeter wave
(mmWave) communications to reduce the high power consump-
tion and propagation loss. However, channel estimation (CE) is
challenging due to the large number of passive RIS elements
without signal processing abilities. In this paper, the uplink
CE for RIS-assisted mmWave multi-input multi-output (MIMO)
systems is formulated as a sparse signal recovery problem in a
novel way. Then, the beam pattern and reflection pattern design
based on the compressed sensing (CS) theory are proposed to
guarantee the efficient CE. Simulation results demonstrate that,
for various CS-based CE algorithms, the proposed patterns can
reduce more than 50% pilot overhead at 0 dB signal-to-noise ratio
(SNR) while maintaining the same accuracy of CE compared with
the existing patterns.

Index Terms—Reconfigurable intelligent surface (RIS), channel
estimation (CE), pilot beam pattern design, reflection design.

I. INTRODUCTION

INTELLIGENT reflecting surface also referred to as recon-
figurable intelligent surface (RIS) is a kind of electromag-

netic metasurfaces consisting of passive reflecting units. It has
been regarded as an appealing solution to the high hardware
cost and power consumption problem in millimeter wave
(mmWave) multi-input multi-output (MIMO) systems [1].
However, channel estimation (CE) for RIS-assisted mmWave
MIMO systems poses a challenge due to the large number of
passive elements that lack signal processing abilities.

Recently, there have been some works investigating the CE
problem for the fully passive RIS system. A binary-reflection
controlled least square (LS) CE protocol was proposed in [2]
at cost of intractable computational complexity. To reduce
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the pilot overhead and the computational complexity, the
compressive sensing (CS) algorithms are utilized in [3]–[5]
for multi-input single-output (MISO) systems. However, the
beam pattern and reflection pattern design have great impact
on the performance of the CS-based CE methods and only few
works take them into consideration.

To achieve better CS-based CE accuracy, the beam pattern
and reflection pattern need to be designed. By assuming that
the position of RIS is known to the BS, the pilot signals and
reflection patterns are designed in [6], but only considering
the single antenna at the receiver. For MISO systems, an
optimized channel estimator in a closed form is proposed by
leveraging the typical mean-squared error (MSE) criterion in
[7]. However, the existing works do not take into account the
beam pattern and reflection pattern design simultaneously and
do not focus on the CS-based CE problem in MIMO systems.

In this paper, we consider both the beam pattern and
reflection pattern design for RIS-assisted mmWave MIMO
systems. The contributions are summarized as follows:

1) We propose a novel channel estimation formulation to
significantly reduce the computational complexity of CE
for RIS-assisted MIMO system.

2) The reflection pattern is designed by ensuring the spar-
sity of the cascaded channel and the beam pattern is
designed by minimizing the coherence of the sensing
matrix based on the CS theory.

3) Various CS-based algorithms are utilized to verify the
superiority of the proposed scheme. And the benefit of
the proposed scheme is especially evident for CS-based
greedy algorithms.

Notations: In this paper, lower-case and upper-case boldface
letter x and X denote a vector and a matrix respectively. [x]i
denotes the i-th element of vector x. XT, XH, X∗ denote the
transpose, the conjugate transpose, the conjugate. The ℓ2-norm
of vector x is indicated by ∥x∥2, while the Frobenius norm
of matrix X is denoted as ∥X∥F . The diagonal matrix having
vector x on its diagonal is denoted as diag(x). Vectorization
of matrix X is given by vec(X), and the inverse operation,
reshaping vector x into a p × q matrix, is represented by
vec−1

p,q(x). tr(X) denotes the trace of X. The Kronecker
product is denoted as A ⊗ B. Ip is the identity matrix of
size p× p and Op×q is a p× q matrix with all elements being
zero. mod(a, b) calculates the remainder of a being divided
by b.
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II. SYSTEM MODEL

A. Cascaded Channel Model

In a single-user MIMO system with the carrier wavelength
λ, the base station (BS) and the user are equipped with
the uniform linear array (ULA) with Nr and Nt antennas,
respectively, and the RIS has M = Mx × My elements in
a uniform planar array (UPA). Following [3], a geometric
channel model for narrowband systems is used to formulate the
RIS–BS channel and user–RIS channel. These two channels
are low-rank due to the sparse scattering nature of mmWave,
i.e. L1 and L2 are small, where they denote the numbers
of RIS–BS and user–BS paths, respectively. Specifically, the
RIS–BS channel G can be modeled as

G =

√
MNr

L1

L1∑
l1=1

αl1ar

(
θ
GNr

l1

)
af

(
ϑGM

l1
, φGM

l1

)H

, (1)

where αl1 is the complex gain consisting of path loss, θGNr

l1
is

the angle of arrival (AoA) at the BS, and ϑGM

l1
and φGM

l1
repre-

sent the azimuth and elevation angle of departure (AoD) at the
RIS, respectively. ar(ϑ, φ) ∈ CNr×1 and af (ϑ, φ) ∈ CM×1

represent the normalized array steering vectors at the BS and
the RIS. Similarly, the user–RIS channel R is represented as

R =

√
MNt

L2

L2∑
l2=1

αl2af

(
ϑRM

l2
, φRM

l2

)
au

(
θ
RNt

l2

)H

, (2)

where αl2 is the complex gain consisting of path loss, θRNt

l2
is

the AoD at the user, and ϑRM

l2
and φRM

l2
represent the azimuth

and elevation AoA at the RIS. au(θ) ∈ CNt×1 represents the
normalized array steering vector at the user. Normalized array
steering vectors for X-element UPA (X = X1×X2) and ULA
can be formulated according to [3] as{

a(ϑ, φ) = 1√
X

(
e−i·κ sin(ϑ) cos(φ)x1/λ

)
⊗
(
e−i·κ sin(φ)x2/λ

)
,

a(θ) = 1√
X
e−i·κ cos(θ)x/λ, (3)

where κ = 2πd, x1 = [0, 1, 2, . . . , X1 − 1]T, x2 =
[0, 1, 2, . . . , X2 − 1]T, x = [0, 1, 2, . . . , X − 1]T, and d is the
antenna spacing which is assumed to be λ/2 in this paper. We
can further virtually represent the two channels as

G = VNr
ΓVH

M , R = VMΣVH
Nt

, (4)

where the beamspace matrices, denoted as VNr
∈ CNr×NG

r ,
VM ∈ CM×MG

and VNt
∈ CNt×NG

t , are composed of NG
r ,

MG = MG
x × MG

y and NG
t steering vectors of predeter-

mined grids at the BS, RIS and user. Γ ∈ CNG
r ×MG

and
Σ ∈ CMG×NG

t are the L1 and L2-sparse beamspace channels
corresponding to G and R, respectively. For simplicity, we
consider MG

x = Mx,M
G
y = My in this work, but it can

be extended to general cases easily. Considering a uniform
grid spanning from −1 to 1 for all spatial angles, we define
the uplink cascaded channel as H ≜ Gdiag(Ψ)R, where
Ψ ∈ CM×1 is the phase shift vector at the RIS assuming each
RIS element does not change the signal amplitude. Thus, we
can obtain

H = VNrΓV
H
Mdiag(Ψ)VMΣVH

Nt
= VNrΓΩΣVH

Nt
, (5)

where Ω ≜ VH
Mdiag(Ψ)VM .

W1,1 ... W1,t ... W1,T1
... Wk,1 ... Wk,t ... Wk,Tk

... WK,1 ... WK,t ... WK,TK

F1,1 ... F1,t ... F1,T1
... Fk,1 ... Fk,t ... Fk,Tk

... FK,1 ... FK,t ... FK,TK

CE: Channel Estimation

DT: Data Transmission

CE DT

Ψ1
... Ψk

... ΨK

k-th Reflection PatternNB
t Pilots

Coherence Time

Fig. 1. Sounding procedure. [8]

B. Sounding Procedure

The CE scheme is shown as Fig. 1 similar to [8]. K
different RIS reflection vector designs Ξ ≜ [Ψ1,Ψ2, . . . ,ΨK ]
(k = 1, 2, . . . ,K) are considered within the CE stage in one
channel coherence time. Tk pilot blocks are transmitted for one
reflection vector design Ψk, and the corresponding cascaded
channel is Hk ≜ Gdiag(Ψk)R. For the t-th (t = 1, 2, . . . , Tk)
pilot block, NB

r and NB
t beams are designed at the BS and the

user respectively (NB
r < Nr, NB

t < Nt), so in one pilot block
NB

t pilots are transmitted. The beam pattern design for the t-th
pilot block within the k-th reflection design is represented by
precoding Fk,t ∈ CNt×NB

t and combining Wk,t ∈ CNr×NB
r .

Given the user’s p-th (p = 1, 2, . . . , NB
t ) transmitted beam

fk,t,p for the t-th pilot block, the received signal yk,t,p can be
described as

yk,t,p = WH
k,tHkfk,t,psk,t,p +WH

knk,t,p, (6)

where sk,t,p is the transmitted pilot signal with |sk,t,p| = 1,
nk,t,p ∼ CN (0, σ2

nINB
r
) is the white Gaussian noise with

mean µ and variance σ2. Collect all NB
t transmitted pilots

within the pilot block as

Yk,t = WH
k,tHkFk,t +Nk,t, (7)

where matrix Yk,t ≜ [yk,t,1,yk,t,2, . . . ,yk,t,NB
t
], Fk,t ≜

[fk,t,1, fk,t,2, . . . , fk,t,NB
t
], and the noise matrix Nk,t ≜

[WH
k,tnk,t,1, . . . ,W

H
k,tnk,t,NB

t
]. The measurement number for

the k-th reflection vector design is Qk = TkN
B
t NB

r .

C. Problem Formulation

The cascaded channel with Ψk can be represented as

vec(Hk) = (V∗
Nt

⊗VNr
) vec(ΓΩkΣ)

(⋆)
= (V∗

Nt
⊗VNr )(Σ

T ⊗ Γ) vec(Ωk)

= (V∗
Nt

⊗VNr )(Σ
T ⊗ Γ)(VT

M ⊚VH
M )Ψk

= (V∗
Nt

⊗VNr )JDΨk,

(8)

where in (⋆) the mix-product property of Kronecker product
is used. J ≜ ΣT ⊗Γ, and D ≜ VT

M ⊚VH
M is the Khatri-Rao

product of VT
M and VH

M . (8) can be simplified as

vec(Hk) = (V∗
Nt

⊗VNr
)J̃D̃Ψk, (9)

where D̃ corresponds to the initial MG rows of D, and J̃ is
a merged form of J [3]:

J̃(:, i) =
∑
n∈Si

J(:, n), (10)
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where Si designates the indices in D sharing the same row
as the i-th row. Utilizing (9), the received signal in (7) can be
further represented in the vectorized form as

yk,t
(a)
= (FT

k,t ⊗WH
k,t)vec(Hk) + nk,t

(b)
= (FT

k,t ⊗WH
k,t)(V

∗
Nt

⊗VNr
)J̃D̃Ψk + nk,t

(c)
=

(
(D̃Ψk)

T ⊗
(
(FT

k,t ⊗WH
k,t)(V

∗
Nt

⊗VNr
)
))

j̃+ nk,t,

(11)

where (a) and (c) make use of the mixed-product property
inherent to the Kronecker product with yk,t ≜ vec(Yk,t) ∈
CNB

t NB
r ×1, nk,t ≜ vec(Nk,t), j̃ = vec(J̃) ∈ CNG

t NG
r MG×1

as in [3]. (b) uses the result from (9). Given the sparse nature
of j̃, it is feasible to utilize CS algorithms. However, the huge
size of j̃ still makes it impractical to compute.

III. PROPOSED METHOD

A. Improved Channel Estimation Formulation

To reduce the computation complexity due to the huge size
of j̃, we further propose to formulate (11) as

yk,t
(d)
= (FT

k,t ⊗WH
k,t)(V

∗
Nt

⊗VNr
)λk + nk,t

(e)
= Qk,tλk + nk,t,

(12)

where the deduction of (d) is illustrated in Fig. 2 and the
merged λk ∈ CNG

t NG
r ×1 can be formulated as

[λk]i =

MG∑
m=1

[(D̃Ψk)
T]m[ j̃]NG

t NG
r ·(m−1)+i, (13)

for i = 1, 2, . . . , NG
t NG

r . Without loss of generality, we
assume Tk = T and Qk = Q for k = 1, 2, . . . ,K. In
(e), the equation is simplified by defining Qk,t ≜ (FT

k,t ⊗
WH

k,t)(V
∗
Nt

⊗VNr ). Collecting all received signals from the
T pilot blocks in (12), we can obtain

yk = Qkλk + nk, (14)

where yk ≜ [yT
k,1, . . . ,y

T
k,T ]

T, Qk ≜ [QT
k,1, . . . ,Q

T
k,T ]

T and
nk ≜ [nT

k,1, . . . ,n
T
k,T ]

T. The problem can be solved by any
CS algorithms where λk ∈ CNG

t NG
r ×1 is a sparse vector.

After the CE with K reflection vectors, the data transmis-
sion is considered within the channel coherence time. With a
phase shift vector Ψ that satisfies

D̃Ψ =

K∑
k=1

βkD̃Ψk, (15)

the channel H for the data transmission can be formulated as

H = vec−1
Nr,Nt

(
(V∗

Nt
⊗VNr

)Λβ
)
, (16)

( )⊗ = ( )+ + + =

(D̃Ψk)
T

(FT
k,t ⊗WH

k,t)(V
∗
Nt

⊗VNr ) j̃

λk

Fig. 2. Merging from j̃ in Eq. (11) (c) to λk in Eq. (12) (d) with MG = 4.

where Λ ≜ [λ1,λ2, . . . ,λK ] is to be estimated via CE and
coefficients β ≜ [β1, β2, . . . , βK ]T can be determined with the
phase shift vector Ψ from (15). It is worth noting that with
K (K ≤ M ) reflection vectors Ψk for k = 1, 2, . . . ,K, the
phase shift vector Ψ used in data transmission can be well
represented by considering (15) as a linear mapping.

B. Computational Complexity of CE Formulations

The computational complexity comparison with OMP algo-
rithm is listed in Table I, where we assume NG

t = Nt, N
G
r =

Nr. L and L′ = L1L2 denote the sparsity of λk and J̃
respectively. L ≪ L′ with our designed reflection patterns,
and more details about the sparsity will be discussed in
section III-C. With unmerged J in (8), The OMP algorithm
solving (11) has the complexity O(L′Q′′·M2NtNr) [9], where
Q′′ is the required number of measurement. With merged J̃ in
(11) (c) which is proposed in [3], the complexity is reduced
to O(L′Q′ · MNtNr), where Q′ is the required number of
measurement. The complexity of our proposed CE formulation
using OMP to solve (12) (d) is K ·O(LQ ·NtNr) = O(KL ·
QNtNr). Considering the reduced dimension of the channel
matrices to be estimated (λk, j̃, j), the required number of
measurements for OMP algorithm satisfies Q ≪ Q′ ≪ Q′′.
Thus, the complexity of the proposed CE formulation is much
lower than existing formulations [3].

TABLE I
COMPUTATIONAL COMPLEXITY OF FORMULATIONS WITH OMP.

Compressed CE Formulation Computational Complexity (OMP)

Eq. (11) (c) with unmerged J O(L′Q′′ ·M2NtNr)

Eq. (11) (c) with merged J̃ [3] O(L′Q′ ·MNtNr)

Eq. (12) (d) (proposed) K · O(LQ ·NtNr) = O(LQ ·KNtNr)
* L ≪ L′, Q ≪ Q′ ≪ Q′′, K ≤ M .

C. RIS Reflection Pattern Design

The design of reflection patterns has a great impact on
the performance of CE. In general, reflection patterns can
be designed to maximize the received power to increase the
received SNR or minimize the coherence among different
λk. However, different from other formulations such as (11)
[3] where the RIS reflection vector is not part of the sparse
channel to recover, the sparsity of Λ in (16) depends on the
reflection pattern design as shown in (13). Obviously, not all
Ξ that satisfies (15) will lead to a sparse Λ. Considering
that CS algorithms can only be applied when the sparsity is
guaranteed, the aim of the reflection pattern design in this
paper is to ensure the sparsity of Λ. The K reflection patterns
Ξ can be designed by choosing K unique columns from Ξ̂:

Ξ ⊆ Ξ̂ = D̃−1, (17)

where Ξ̂ contains M candidates for the reflection pattern
design. It can be readily verified that Λ becomes extremely
sparse because D̃Ψk has only one non-zero element ac-
cording to (13). For general cases where MG

x ̸= Mx

and/or MG
y ̸= My , to ensure the phase shift property,

Ξ̂ = 1
M max{MG

x ,Mx}max{MG
y ,My}D̃†, where D̃† is the

pseudo-inverse of D̃. When MG
x < Mx, MG

x needs to be
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Wk,t =

[
O

NB
r ·

⌊
(t−1)NB

t
Nt

⌋
×NB

r

INB
r

O(
Nr−NB

r ·
⌊

(t−1)NB
t

Nt

⌋)
×NB

r

]T
,

Fk,t =

[
O

NB
t ·mod

(
t−1,

Nt
NB

t

)
×NB

t

INB
r

O(
Nt−NB

t ·mod

(
t−1,

Nt
NB

t

))
×NB

t

]T
.

(24)

chosen satisfying mod(Mx,M
G
x ) = 0, and it is similar for

MG
y . With (17), when MG

x = Mx,M
G
y = My and K = M ,

the estimated channel in (16) can be simplified to

H = vec−1
Nr,Nt

(
(V∗

Nt
⊗VNr

)ΛD̃Ψ
)
, (18)

which can also be easily adapted for K < M . Other reflection
pattern designs such as discrete Fourier transform (DFT)
matrices and Hadamard matrices [10] also contribute more or
less to the sparsity of Λ. The performance comparison between
the reflection pattern designs will be shown in section IV.

D. Beam Pattern Design
Based on the CS theory, it is known that smaller coherence

of the sensing matrix Qk improves the performance of the
sparse signal recovery [11], [12]. However, due to the high
dimension of RIS-assisted MIMO systems, methods such as
[13] that considers the RIS-assisted MISO systems can not be
applied directly.

With the improved channel estimation formulation in (14),
the beam pattern design is based on the minimization of total
coherence which is defined as

µt(Qk) =
∑

1≤q1,q2≤Q,
q1 ̸=q2

⟨Qk(:, q1),Qk(:, q2)⟩, (19)

which is the summation of inner product of the q1-th column
and the q2-th column. It is easy to prove ∥Zk,t(:, n)∥2 = 1
by assuming equal power of each beam for n = 1, 2, . . . , Q,
where Zk,t ≜ Fk,t ⊗ W∗

k,t is the Kronecker product of the
transmit and receive beamforming. Therefore, (19) can be
written as
µt(Qk) = ∥QH

kQk − IG∥2F
= tr

((
QH

kQk − IG
)2)

= tr
(
QH

kQkQ
H
kQk − 2QH

kQk + IG
)

= tr
(
QkQ

H
kQkQ

H
k − 2QkQ

H
k + IQ

)
+ (G−Q)

= ∥QkQ
H
k − IQ∥2F + (G−Q)

= ∥ZT
k (VNVH

N )Z∗
k − IQ∥2F + (G−Q),

(20)

where Zk ≜ [Zk,1,Zk,2, . . . ,Zk,T ], Qk = ZT
kVN , G ≜

NG
t NG

r . It can be found that µt(Qk) ≥ (G − Q), and when
ZT

k (VNVH
N )Z∗

k−IQ = OQ×Q, the total coherence in ZT
kVN

is minimized. VN ≜ V∗
Nt

⊗VNr
, where VNt

and VNr
are

defined in (4) and

VNVH
N =

NG
t NG

r

NtNr
INtNr . (21)

Substituting (21), (20) can be converted to

min
Zk

∥∥∥∥NG
t NG

r

NtNr
ZT

kZ
∗
k − IQ

∥∥∥∥2
F

,

s.t. ∥Zk(:, n)∥22 = 1, n = 1, 2, . . . , Q.

(22)

So far, the singular value decomposition (SVD) can be em-
ployed to find the optimal Zk as the following proposition.

Proposition 1. When Q ≤ NtNr, (22) is optimized when

Zk = U1

[
IQ OQ×(NtNr−Q)

]T
UH

2 , (23)

where U1 ∈ CNtNr×NtNr , U2 ∈ CQ×Q are both unitary
matrices.

Proposition 1 can be easily proved. With the design of Zk,
beam pattern matrices Wk,t and Fk,t can be obtained based on
approximation from Zk,t = Fk,t⊗W∗

k,t [14]. As one possible
exact solution, suppose mod(Nt, N

B
t ) = mod(Nr, N

B
r ) = 0,

Wk,t and Fk,t can be designed as (24), where ⌊x⌋ denotes
the floor function returning the greatest integer less than or
equal to x. Notably, hybrid beamfoming technology also can
be employed to reduce radio frequency (RF) chains as well as
the power consumption. With the design in (24), it is easy to
verify that

Zk(p, q) =

{
1, p = aqNrN

B
t + bq(Nr +NB

r ) + cq,

0, otherwise,
(25)

where aq = ⌊(q− 1)/NtNr⌋, bq = ⌊(q− 1− aqNtNr)/N
B
r ⌋,

cq = 1 +mod(q − 1− aqNtNr, N
B
r ) satisfies Proposition 1.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of CE with the
proposed designs in (17) and (24) via computer simulations.
Simulation uses C++ with Armadillo linear algebra library.
The system parameters are listed in Table II.

TABLE II
SYSTEM PARAMETERS IN SIMULATIONS.

Parameters Values
(Nt, NG

t , NB
t ), (Nr, NG

r , NB
r ) (8, 8, 2), (16, 16, 2)

Mx ×My = M , MG
x ×MG

y = MG 8× 8 = 64, 8× 8 = 64

(L1, L2), K (5, 5), 64

In Fig. 3, the proposed beam pattern and reflection pattern
design are compared with the conventional methods (i.e. ran-
dom beam patterns and truncated DFT reflection pattern design
[10]). Greedy CS algorithms such as OMP and stagewise
OMP (StOMP) [15] are used to evaluate the performance.
(In StOMP, the maximum number of support selections in
each iteration is constrained to enhance stability.) The nor-
malized mean square error (NMSE) performance is defined
as E[∥Ĥ −H∥2F /∥H∥2F ], where H and Ĥ represent the real
channel and the estimated channel respectively. It is worth
noting that CS algorithms with random reflection patterns only
achieve 0 dB NMSE performance and are therefore omitted in
the comparisons.
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Fig. 3. Comparison of proposed pattern designs and the traditional method with OMP and StOMP.

Fig. 3(a) depicts the NMSE performance versus the SNR
with KTNB

t = 768 pilots (LS needs at least KNtNr/N
B
r =

4096). For OMP algorithm, the proposed RIS reflection pattern
design outperforms the widely adopted DFT reflection pattern
by around 2 dB. When the beam pattern design is applied with
the reflection pattern design, the performance can be further
enhanced by more than 3 dB. In other words, compared with
existing pattern designs, more than 5 dB improvement can be
achieved with our proposed patterns.

Fig. 3(b) shows the NMSE performance versus the varying
pilot overhead KTNB

t from 384 to 1536. It can be observed
that, for OMP, in order to achieve the same NMSE perfor-
mance such as −8 dB, compared with the DFT reflection
pattern, the proposed reflection pattern design without and with
proposed beam pattern design can save about 35% and 55%
of pilot overhead respectively.

StOMP algorithm also achieves desirable improvement in
both Fig. 3(a) and Fig. 3(b). The proposed beam pattern and
reflection design are based on the CS theory instead of a
specific CS algorithm. Thus, the works in this paper can be
employed in other CS algorithms, especially for the greedy
CS algorithms. Notably, our proposed patterns still work for
the non-greedy algorithms including ℓ1-minimization based
algorithms and sparse Bayesian learning (SBL) [16]. Since the
NMSE performance of these algorithms has a smaller gap to
the lower bound, the improvement is not as large as greedy CS
algorithms. Considering their unaffordable high computational
complexity, these algorithms are not practical in real systems
and are therefore not detailed in simulation.

V. CONCLUSION

In this paper, we propose a novel CE formulation with the
beam pattern and reflection pattern design for the CE in RIS-
assisted mmWave MIMO systems based on the CS theory.
Simulation demonstrates that the proposed pattern designs can
reduce more than 50% pilot overhead to achieve the same CE
accuracy and improve more than 5 dB CE performance with
the same pilot overhead. The benefit of the proposed scheme
is specifically evident for CS-based algorithms.

REFERENCES

[1] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,” IEEE Commun.
Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.

[2] D. Mishra and H. Johansson, “Channel estimation and low-complexity
beamforming design for passive intelligent surface assisted MISO wire-
less energy transfer,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process. (ICASSP), May 2019, pp. 4659–4663.

[3] P. Wang, J. Fang, H. Duan et al., “Compressed channel estimation for
intelligent reflecting surface-assisted millimeter wave systems,” IEEE
Signal Process. Lett., vol. 27, pp. 905–909, May 2020.

[4] Y. You, L. Zhang, M. Yang et al., “Structured OMP for IRS-assisted
mmwave channel estimation by exploiting angular spread,” IEEE Trans.
Veh. Technol., vol. 71, no. 4, pp. 4444–4448, Apr. 2022.

[5] X. Wei, D. Shen, and L. Dai, “Channel estimation for RIS assisted wire-
less communications–part II: An improved solution based on double-
structured sparsity,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1403–1407,
May 2021.

[6] Z. Wan, Z. Gao, and M.-S. Alouini, “Broadband channel estimation for
intelligent reflecting surface aided mmWave massive MIMO systems,”
in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–6.

[7] W. Zhang, J. Xu, W. Xu et al., “Cascaded channel estimation for IRS-
assisted mmWave multi-antenna with quantized beamforming,” IEEE
Commun. Lett., vol. 25, no. 2, pp. 593–597, Feb. 2021.

[8] J. He, H. Wymeersch, and M. Juntti, “Channel estimation for RIS-aided
mmwave MIMO systems via atomic norm minimization,” IEEE Trans.
Wireless Commun., vol. 20, no. 9, pp. 5786–5797, Sep. 2021.

[9] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory,
vol. 53, no. 12, pp. 4655–4666, Dec. 2007.

[10] Z. Zhou, N. Ge, Z. Wang et al., “Joint transmit precoding and recon-
figurable intelligent surface phase adjustment: A decomposition-aided
channel estimation approach,” IEEE Trans. Commun., vol. 69, no. 2,
pp. 1228–1243, Feb. 2021.

[11] L. Zelnik-Manor, K. Rosenblum, and Y. C. Eldar, “Sensing matrix
optimization for block-sparse decoding,” IEEE Trans. Signal Process.,
vol. 59, no. 9, pp. 4300–4312, Sep. 2011.

[12] J. Lee, G.-T. Gil, and Y. H. Lee, “Channel estimation via orthogonal
matching pursuit for hybrid MIMO systems in millimeter wave com-
munications,” IEEE Trans. Commun., vol. 64, no. 6, pp. 2370–2386,
Jun. 2016.

[13] J. Chen, Y.-C. Liang, H. V. Cheng et al., “Channel estimation for
reconfigurable intelligent surface aided multi-user MIMO systems,”
2019, arXiv:1912.03619. [Online]. Available: https://arxiv.org/abs/1912.
03619

[14] C. F. Van Loan and N. Pitsianis, “Approximation with Kronecker prod-
ucts,” in Linear Algebra for Large Scale and Real-Time Applications,
M. S. Moonen, G. H. Golub, and B. L. R. Moor, Eds. Leuven, Belgium:
Springer, 1993, ch. 17, pp. 293–314.

[15] D. L. Donoho, Y. Tsaig, I. Drori et al., “Sparse solution of underde-
termined systems of linear equations by stagewise orthogonal matching
pursuit,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1094–1121, Feb.
2012.

[16] M. E. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, Jun. 2001.


	Introduction
	System Model
	Cascaded Channel Model
	Sounding Procedure
	Problem Formulation

	Proposed Method
	Improved Channel Estimation Formulation
	Computational Complexity of CE Formulations
	RIS Reflection Pattern Design
	Beam Pattern Design

	Simulation Results
	Conclusion
	References

