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Abstract—In this experiment, we implement a dual-mode PSK
transceiver on SDR with FPGA, supporting both BPSK and
QPSK. Moreover, the transceiver is designed to be able to
switch between the two modes by introducing a packet-based
communication protocol, where modulation information can be
extracted from the packet header. The design is resource-efficient
implemented using block diagrams with intellectual property (IP)
cores and Verilog modules in Vivado. Both simulation results
and experiment observations on an SDR platform verify the
effectiveness of the design.

Index Terms—Phase-shift keying (PSK), software-defined ra-
dio (SDR), transceiver design, modulation, demodulation, field
programmable gate array (FPGA).

I. INTRODUCTION

SOFTWARE-DEFINED radio (SDR) is useful in various
applications, including rapid prototyping and research.

A millimeter wave (mmWave) SDR platform [1] can enable
research in both mmWave physical-layer communications and
the high-level networking problems. Phase-shift keying (PSK)
is a popular modulation scheme in digital communications.
Among PSK, the simplest two are the binary PSK (BPSK) and
the quadrature PSK (QPSK). The carrier extraction is required
for coherent demodulation, though differential encoding can
be used to avoid the carrier extraction. Field programmable
gate array (FPGA) is a popular choice for SDR baseband
processing, due to its flexibility and high performance. In this
project, instead of employing high-level synthesis (HLS) [2],
we directly implement the transceiver on FPGA using hard-
ware description language (HDL) Verilog, for better control
of the underlying hardware and a more efficient design.

To benefit the research and learning community, the design
sources (Vivado project) and this paper (in LATEX) are open
source [3]. The contributions of this paper is summarized as
follows:

1) We implement a dual-mode PSK transceiver on SDR
with FPGA, enabling both BPSK/QPSK modulation and
coherent demodulation, with carrier synchronization and
symbol synchronization.

2) A packet-based communication is introduced to enable
the switching between BPSK and QPSK based on header
fields, another step towards to a flexible and ready-to-use
transceiver.
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3) The open-source design is implemented on a Zynq-7020
FPGA and verified on an SDR platform, demonstrating
its effectiveness.

II. SYSTEM OVERVIEW

A. Software-Defined Radio
We employ eNodeX 30B [4], an SDR platform equipped

with a pair of configurable Global System for Mobile Commu-
nications (GSM) transmitter (Tx) and receiver (Rx) antennas.
An MS Windows software is provided for configurations,
including the sampling frequency, the carrier frequency, at-
tenuation and gain, etc.

B. Transceiver Design
The current transmitter and receiver are implemented on the

same FPGA, but the implementation can be readily extended
for different FPGAs with small frequency offsets. The system
overview is shown in Fig. 1.
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Fig. 1. Transceiver system overview.

Clock Generator. Required clocks are generated from the
programmable logic (PL) clock. All reset signals are generated
using Processor System Reset Modules [5], which can provide
synchronized power-up reset signals.

RF Data Converter. This block contains analog-to-digital
converters (ADCs) and digital-to-analog converters (DACs),
enabled by a vendored AD9361 module [6].

Tx Signal Generator. The transmitted signal is generated
in this block. Currently, it repeats a certain pattern and does not
accept external input. But it can be readily extended to a more
complicated design, based on the current interface template.

Rx Processor. This block is responsible for processing the
received signal, including demodulation and data extraction
from a packet. It is the most complex (and the core) block in
the system.

System ILA. The system integrated logic analyzer (system
ILA) [7] is used to observe the internal signals.

Constant Configurations. Several parameters can be con-
figured in this block. Most importantly, the mode control
constants (MODE_CTRL) are shown in Table I.
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TABLE I
MODE CONTROL CONSTANTS

Mode Localparam Value is_bpsk Packet
BPSK MODE_BPSK 4'b0001 (1) 1'b1 No
QPSK MODE_QPSK 4'b0010 (2) 1'b0 No
Mixed MODE_MIX 4'b0100 (4) variable Yes

The system can be configured to work in BPSK, QPSK, or
the mixed mode. The remaining part of the paper will focus on
the mixed mode, which has MODE_CTRL equal to MODE_MIX
(4'b0100) and has a packet-based communication. Details of
the design of packets are in Section V.

C. BPSK/QPSK Modulation

The BPSK and QPSK modulation constellation graphs used
in the system are shown in Fig. 2. Different from the traditional
setting, out adopted BPSK constellation in Fig. 2(a) is a
combination of in-phase (I) and quadrature (Q) components.
This is to make sure the phases used in BPSK are among those
in QPSK, enabling a smooth transition between the two modes,
which is critical because the header field is always modulated
in BPSK. The QPSK constellation in Fig. 2(b) satisfies the
Gray code: two adjacent values in the constellation differ in
only one bit.
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Fig. 2. BPSK/QPSK modulation constellation used in the system.

The design heavily relies on the advanced extensible
interface (AXI) [8], and the AXI stream (AXIS) protocol is
used for data transmission, which requires the data width is a
multiple of 8 bits (1 byte) in Vivado. Therefore, we define the
BPSK uses bit 1, and QPSK uses bits 1 and 0, both counting
from the least significant bit (LSB).

III. TRANSMITTER

A. Carrier NCO

The carrier frequency is generated by a numerically con-
trolled oscillator (NCO). In Vivado, we use the Direct Digital
Synthesis (DDS) Compiler IP [9] as the NCO. Both the cosine
and sine components are used. Due to the need of carrier
synchronization (see Section IV-B), the DDS does not have
a fixed frequency, but an input stream signal controlling the
phase, connected from the module NCO_Phase (see Eq. (3)).

B. PSK Modulation

1) Pseudo-random Number (PN) Generator: In this exper-
iment, the transmitted signal are pseudo-random number (PN)
sequences. Typically, we implement the PN generator with
𝑁 = 4 (period is 24−1 = 15) and 𝑁 = 5 (period is 25−1 = 31)
using a shift register [10]. Thus, the 2-bits signal aggregating
the I and Q components has the period of 465. The Verilog
code for the module PN_Gen is shown below.

module PN_Gen # (parameter N = 5) (
input clk,
output reg pn

);
reg [N-1:0] PN_buf = 1; wire rst;
generate
if (N == 5)

always @ (posedge clk)
if (rst) begin PN_buf <= 5'd1; pn <= 0; end
else begin

PN_buf <= { PN_buf[3:0], PN_buf[4] ^ PN_buf[2] };
pn <= PN_buf[4];

end
else if (N == 4)

always @ (posedge clk)
if (rst) begin PN_buf <= 4'd1; pn <= 0; end
else begin
PN_buf <= { PN_buf[2:0], PN_buf[3] + PN_buf[2] };
pn <= PN_buf[3];

end
else ; // NOT implemented yet!
endgenerate
assign rst = !(|PN_buf); // reset when PN_buf is all 0

endmodule

2) Modulation With I and Q Streams: The modulation is
performed by selecting the appropriate carrier phase according
to the input bits and the constellation (in Fig. 2). Note the
Q component is always 90◦ ahead of the I component. The
modulated I and Q components are then connected to the
corresponding DAC ports.

IV. RECEIVER

A. Overview

The receiver performs carrier synchronization, symbol syn-
chronization and PSK detection first, without considering the
packet structure. The depacketizer and the packet extraction is
based on the synchronized bit stream after PSK detection.

B. Carrier Synchronization Using Costas Loop

A Costas loop [11] is used for carrier synchronization. The
basic idea of a Costas loop is to provide an error (carrier
phase offset) feedback. The negative feedback is used to lock
the carrier phase to the PSK signal. The generation of the error
feedback is specific to different modulation schemes, as well
as their constellation graphs.

The proposed dual-mode Costas loop is shown in Fig. 3,
which can be switched between BPSK and QPSK via a control
signal is_bpsk. The two multipliers directly following the
PSK stream input are phase detectors, whose low-frequency
components represent the data stream signal. Therefore, the
data stream I and Q signal can be extracted after passing the
mixed signals through a low-pass filter (LPF). Thus, it is ready
to map the obtained I/Q signal to the constellation graph, and
generate the error signal.
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Fig. 3. Costas loop for carrier synchronization with BPSK/QPSK support.

The error feedback for BPSK is defined as

𝑒BPSK = (𝐼 +𝑄) × (𝐼 −𝑄), (1)

and the error feedback for QPSK is defined as

𝑒QPSK = 𝐼 · sgn(𝑄) −𝑄 · sgn(𝐼). (2)

For stability, the loop filter as an LPF is added before the
error is fed back to the NCO. The NCO implemented with
DDS has the phase defined as

𝜙[𝑛] = 𝜙[𝑛 − 1] + Δ𝜙[𝑛]
= 𝜙[𝑛 − 1] + ( 𝑓0 + 𝑘 · 𝑓feedback),

(3)

where 𝜙[𝑛] is the phase increment at time 𝑛, 𝑓0 is the
free running clock (4.096 MHz in our design), and 𝑘 is the
feedback coefficient. The core Verilog implementation of the
Error Detector Control is given below. For QPSK, the feedback
value is arithmetically right shifted by 6 bits to coarsely match
the scale of that in BPSK.

if (is_bpsk) begin // BPSK
out_I_tdata <= in_I_tvalid ? in_I_tdata + in_Q_tdata : 0;
out_Q_tdata <= in_Q_tvalid ? in_I_tdata - in_Q_tdata : 0;

end
else begin // QPSK
out_I_tdata <= in_I_tvalid ? (in_Q_tdata[WIDTH-1] ?
-in_I_tdata : in_I_tdata) >>> 6 : 0;

out_Q_tdata <= in_Q_tvalid ? (in_I_tdata[WIDTH-1] ?
-in_Q_tdata : in_Q_tdata) >>> 6 : 0;

end

In the Costas loop, the feedback coefficient 𝑘 in Eq. (3) is
an important coefficient to finetune according to the system.
This parameter is reflected as FEEDBACK_SHIFT, and 𝑘 ≜
2−FEEDBACK_SHIFT. The convergence of the Costas loop under
different carrier frequency offset (CFO) values is discussed in
Section VI-B.

C. Symbol Synchronization Using Gardner Loop

A Gardner loop [12] is used to achieve symbol (timing)
synchronization. The structure of a Gardner loop is shown in
Fig. 4. The loop itself is not directly shown in the figure, which
is part of the timing corrector with feedback.

To reduce implementation complexity, we use the sign of
strobe values as mentioned in [12]. The total symbol timing
error considering I and Q components is then simplified as

𝑢𝑡 (𝑟) = 𝑦𝐼 (𝑟 − 1
2 ) [sgn (𝑦𝐼 (𝑟)) − sgn (𝑦𝐼 (𝑟 − 1))]

+ 𝑦𝑄 (𝑟 − 1
2 )

[
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(
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(4)
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Fig. 4. Structure of a Gardner loop for symbol timing synchronization.

where 𝑟 has a symbol frequency of 1.024 MHz. For better
timing performance, we linearly interpolate the 16.385 MHz
input I/Q data to 32.768 MHz. Therefore, 𝑦𝐼 (𝑟−1) and 𝑦𝑄 (𝑟−
1) are delayed by 32 clocks. In FPGA implementation, for
each I/Q stream, two shift registers of depth 16 are used. The
output clk_1M signal indicates the symbol timing sampling
point, which is high for one clock under 32.768 MHz. The
I/Q output signals I_1M and Q_1M are synchronized with
clk_1M. Notably, since we adopt the BPSK constellation in
Fig. 2(a), the symbol timing error depends on both I and Q
components, the same as QPSK. The correctness of symbol
timing is shown in Fig. 10.

D. PSK Detection

Threshold detection. The detection is based on the con-
stellation graph in Fig. 2, and the I/Q signals after the symbol
synchronization:

BPSK symbol =

{
1'b0, 𝐼 +𝑄 ≥ 0,
1'b1, 𝐼 +𝑄 < 0.

(5a)

QPSK symbol =


2'b00, 𝐼 ≥ 0, 𝑄 ≥ 0,
2'b10, 𝐼 < 0, 𝑄 ≥ 0,
2'b11, 𝐼 < 0, 𝑄 < 0,
2'b01, 𝐼 ≥ 0, 𝑄 < 0.

(5b)

It can be observed that the case conditions in Eq. (5b) satisfy
the Gray code in Section II-C. In Verilog implementation, the
threshold comparison is implemented by extracting the MSB
of the I/Q signals.

Phase ambiguity. With the carrier synchronization method
in Section IV-B, the phase ambiguity for detection is inevitably
introduced: the constellation can rotate by 180◦ for BPSK,
and ±90◦ or 180◦ for QPSK. For instance, it leads to flipped
bits in BPSK. Therefore, the detected data stream should be
corrected. The differential encoding [13] can be used, as the
data is encoded in the phase difference, which is immune to
the phase ambiguity. However, this method can increase the
bit error rate (BER) with error propagation.

Phase correction with known sequences. The phase am-
biguity can be corrected by using a known sequence. The
existence of the known sequence can be detected by its
differential results, and the phase of the known sequence is
recorded for phase correction during the payload and header
transmission. This approach does not add extra overhead in a
packet-based communication system as there is a header field.
Details of the implementation will be introduced in Section V.
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V. PACKET-BASED COMMUNICATION

A. Frame Structure

The frame structure is shown in Fig. 5, consisting of the
TRN, HDR and the PLD fields.

D D . . . D D HDR PLD
0101010101...01011010

TRN
(7 + 1) × 32 = 256 bits

MCS Length Reserved
8 bits 16 bits 40 bits

Fig. 5. Frame structure of the packet-based communication.

Training (TRN). The training field is used to provide
packet timing information (coarse synchronization), as well
as achieving synchronization of the carrier and symbol timing
in the meantime. It consists of 7 repetitions of D and one
D, where D and D are of length 32. D and D are repetitive
sequences of ‘01’ and ‘10’, respectively. The design is inspired
by the short training field (STF) in IEEE 802.11ad [14], but
easier to implement at the cost of a lower signal-to-noise ratio
(SNR). The training field from bit 0 to (7 + 1) × 32 − 1 = 255
is defined as

TRN[𝑖] =
{

mod(𝑖, 2), 𝑖 = 0, 1, . . . , 223,
mod(𝑖 + 1, 2), 𝑖 = 224, 225, . . . , 255,

(6)

where mod(𝑎, 𝑛) is the modulo operation returning the remain-
der of a division. Notably, the phase transition from bit 223
to 224 is used to indicate the boundary of the packet.

Header (HDR). The header field is used to provide packet
information, including the modulation and coding scheme
(MCS) and the packet length (Length) in bits. The remaining
bits are reserved for future use. The MCS field currently only
determines the use of BPSK or QPSK (no channel coding
is used in this design). The MCSs for BPSK and QPSK are
defined as ‘01010101’ and ‘10101010’ respectively.

Payload (PLD). The payload field is used to carry the actual
data. Its length in bits (1 bit for each BPSK symbol, 2 bits
for each QPSK symbol) should match the Length field in the
header.

B. Packetizer Design

The packetizer finite state machine (FSM) has 5 states:
IDLE, HDR, PLD, LAST and WAIT. The IDLE state is used
to wait for the start of a packet. It transitions to the HDR
state when both the tvalid and tready signals are high,
i.e., the packet starts transmitting. The HDR state is used to
transmit the header (including TRN and HDR)1, as discussed
in Section V-A. It then transmits to the PLD state2 to transmit
the payload stored in the first in, first out (FIFO). Notably, the
FIFO depth should be no smaller than the header length (i.e.,
320). The LAST state is used to transmit the last symbol of
the payload, when the AXIS tlast signal will be high. After
transmitting all payload data, the WAIT state is employed to

1For the packetizer, we do not distinguish TRN and HDR for simplicity,
and they are called the header in contrast to the payload.

2If the payload symbol length is 1, it will directly transition to the LAST
state.

consume all remaining data in the FIFO. This is only used
in our design to better demonstrate the relationship between
the transmitted bits and the received bits, and this state can
be removed for other applications. Finally, after the FIFO is
cleared, the state will transition to the IDLE state waiting for
new data to be transmitted.

C. SPB Detection

SPD detection consists of strength detection (SD), packet
detection (PD) and boundary detection (BD). They jointly
provide information for the coarse packet timing. The PD and
BD are designed similar to [15] for IEEE 802.11ad/ay.

1) Strength Detection (SD): The strength detection checks
the data stream I/Q amplitude from the Costas loop. It is useful
because the PSK detector will always output a value, and
it can confuse the packet parsing when the noise coincides
with the packet sequence. For stability, the SD_flag is
asserted when either the I or Q signal amplitude is larger
than RX_SD_THRESHOLD at one clock within the window
of RX_SD_WINDOW clocks.

2) Packet Detection (PD): The presence of a packet
can be identified by detecting repetitive ‘010101. . . ’ se-
quence (modulated using BPSK). This can be performed by
checking the continuous 1s for the differential results. The
PD_flag is asserted when the differential results remain 1 for
RX_PD_WINDOW clocks. Interestingly, the packet detection
itself does not require a synchronized carrier, as a carrier phase
shift does not significantly affect the ‘01’ sequence detection.

3) Boundary Detection (BD): Exploiting the phase transi-
tion from bit 223 to 224 in the TRN field (see Section V-A
and Fig. 5), the boundary detection can be performed by
checking the differential value being 0 after the PD_flag
being asserted. To ensure stability, the BD_flag is asserted
after RX_BD_WINDOW clocks of continuous 1s in differential
values.3 At boundary detection, the sign of the bit 223 and 224
are also recorded in BD_sgn, which can be used to counter
the phase ambiguity in BPSK demodulation.

D. Depacketizer Design

The depacketizer works the opposite way of the packetizer.
It has 6 states: IDLE, TRN, HDR, PLD, LAST and WAIT. The
TRN and the HDR state must be distinguished because of the
need to extract useful information in the TRN field. The IDLE
state transitions to the TRN state when BD_flag is high.
Since the BD_flag contains the packet timing information,
the depacketizer can count the number of clocks to determine
the start of the HDR field. In the HDR field, both the MCS and
packet length are extracted. Then, the depacketizer transitions
to the PLD state to extract the payload. The tuser signal is
used to indicate the modulation scheme (1 for BPSK and 0
for QPSK). The tlast signal is used to indicate the end of
the payload, at the LAST state. To correct disassert the PD
and BD signal, the WAIT state is employed to wait for one
more clock before it goes to the IDLE state.

3Please refer to the comments in https://github.com/Teddy-van-Jerry/
sdr-psk-fpga/blob/master/verilog/Rx_BD.v for an illustration.

https://github.com/Teddy-van-Jerry/sdr-psk-fpga/blob/master/verilog/Rx_BD.v
https://github.com/Teddy-van-Jerry/sdr-psk-fpga/blob/master/verilog/Rx_BD.v
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VI. SIMULATION RESULTS

In all Verilog simulation, random noise is added to the Rx
ADC, to better simulate the real-world scenario.

A. Transmitter

The transmitter DAC simulaiton results are shown in Fig. 6.

clk_1M024
clk_16M384
DAC_bits[1:0] 3 0 3 0 3 0 3

DAC_bits[1]
DAC_bits[0]

DAC_I[11:0]

DAC_Q[11:0]

(a) BPSK modulation.

clk_1M024
clk_16M384
DAC_bits[1:0] 0 3 0 3 2 3 1 3 1 2

DAC_bits[1]
DAC_bits[0]

DAC_I[11:0]

DAC_Q[11:0]

(b) QPSK modulation.

Fig. 6. DAC simulation results of the transmitter. The gray line denotes the
wave is irrelevant. The DAC waveforms are displayed in the hold mode, in
contrast to the linear mode.

Due to the limited number of samples (4 per period), the
DAC output is not smooth, and shapes like a triangle wave.
Nevertheless, the phase shift for both I and Q at symbol
transitions is clear.

B. Carrier Synchronization Convergence

The simulation results of the Costas loop are shown in
Fig. 7. The convergence is relatively fast. In the BPSK mode,
the Costas loop can successfully handle the CFO smaller than
7.81 kHz. It can be verified by the fact that the feedback
saturates around a constant, which corresponds to the CFO
value. In the QPSK mode, the threshold value is 1.96 kHz.
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Fig. 7. Carrier synchronization for BPSK. The feedback value after the loop
filter v.s. time, with different CFO.

Notably, the convergence performance of QPSK is poorer
than BPSK in the current parameter set, which is by design.
For a dual-mode system which transmits payload in both
BPSK and QPSK with a BPSK header, the carrier synchroniza-
tion is achieved at the BPSK header. Therefore, QPSK does
not need a strong feedback. Furthermore, a smaller feedback
can make the BPSK and QPSK transition smoother, avoiding
a sudden phase jump of 90◦.

C. Mixed-Mode Receiver

In this simulation, we show the successful transmission of
packets in both BPSK and QPSK modulations. The simulation
results are shown in Fig. 8.

The DAC transmits data when DAC_vld is high, and the
payload is transmitted when Tx_vld is high. There is a delay
of The two packet streams are clearly shown, with the first
being QPSK and the second being BPSK, both of 128 bits
length. The Rx_tuser signal shows the detected modulation
scheme at the Rx, with 1 for BPSK and 0 for QPSK. Since
QPSk has a 2× bit rate, the first packet payload is transmitted
2× faster than the first one.

VII. FPGA IMPLEMENTATION

The design is implemented in Vivado 2022.2 using block di-
agrams. Some block diagram designs are shown in Section A.

The hardware resources consumption on the Zynq-7020
(xc7z020clg484-1) board with the default synthesis and imple-
mentation strategy is shown in Table II. Therefore, the design
itself is resource-efficient, and can be readily incorporated into
a larger system.

TABLE II
HARDWARE RESOURCES CONSUMPTION ON ZYNQ-7020

Resource Utilization Available Util. Rate
LUT 7,248 53,200 8.04%

LUTRAM 1,121 17,400 6.44%
FF 8,144 106,400 7.65%

BRAM 27 140 19.29%
DSP 51 220 23.18%
IO 33 200 16.50%

BUFG 10 32 31.25%
MMCM 2 4 50.00%

The FPGA design source is open source [3], and parts of
the design can be easily reused in other projects.

VIII. EXPERIMENT RESULTS ON SDR

The eNodeX SDR platform [4] is configured to provide 1 Tx
and 1 Rx at a sampling frequency of 16.384 MHz. The GSM
antenna carrier frequency is 800 MHz, and the two antennas
have a line-of-sight (LoS) channel.

The parameters used in this design are specially adjusted for
received signal with strength ranging between 1/2 and 3/4 of
the full ADC range. Therefore, you should adapt the antenna
attenuation and gains to get the appropriate signal strength.
With AD9361 [6], each ADC stream has 12 bits as a signed
number, i.e., ranging between −2048 and 2047.
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DAC_vld
Rx_tdata[1]
Rx_tdata[0]
Rx_tvalid
Rx_tlast
Rx_tuser
Tx_1bit
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Rx_1bit

Fig. 8. Mixed-mode simulation results. The first packet is transmitted using QPSK, and the second packet is transmitted using BPSK.
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(b) QPSK packet data (duration: 100 µs).
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(c) Symbol timing clock and BPSK data at Rx (duration: 50 µs).

Fig. 9. Two-channel oscilloscope results of GPIO outputs.

The experiment results are observed via a system ILA in
Vivado, and 4 general-purpose input/output (GPIO) pins are
used to output some 1-bit signals, including the 1-bit Tx and
Rx data stream and their corresponding clock.

In our design, 4 GPIO pins are connected, as listed in
Table III. Fig. 9 shows the oscilloscope results of the GPIO
outputs.

TABLE III
GPIO PIN CONNECTIONS

Pin Signal
GPIO_TH1 Tx 1-bit sequence (clock: 1.024 MHz or 2.048 MHz)
GPIO_TH2 Rx 1-bit sequence (sync. w/ Rx timing clock when BPSK)
GPIO_TH3 2.048 MHz global clock from the clock divider
GPIO_TH4 Rx timing clock (∼1.024 MHz)

In Fig. 9(a) and Fig. 9(b), the GPIO_TH1 and GPIO_TH2
pins are connected, showing the transmitted 1-bit sequence
(Tx) and the respective received 1-bit sequence (Rx). Clearly,
the sequence is successfully recovered in both cases, with a
certain time delay. The structure of pn_5 sequence in BPSK
is clearly seen in Fig. 9(a), which has a bit frequency of
1.024 MHz. By contrast, the bit frequency of QPSK packets
in Fig. 9(b) is 2.048 MHz. The symbol timing clock is shown
in Fig. 9(c), which is not synchronized with the Rx data in
BPSK, as the Rx data is connected after a FIFO with the
master clock of 1.024 MHz. The symbol timing clock has a
measured frequency of near 1.024 MHz on the oscilloscope.

Fig. 10 gives the ILA results for two cases involving
BPSK and QPSK. The ILA results are consistent with the
oscilloscope results, and provide additional insight into the
system, including PSK detection and packet extraction. The
I_16M and the Q_16M signals are the I and Q components
of the data stream signal from the Costas loop, while the I_1M
and the Q_1M signals are provided by the Gardner loop after

symbol timing. The out_clk_1M clock is the symbol timing
clock, which is near optimal, as designed by the Gardner loop.

IX. DISCUSSIONS

A. Possible Enhancement

Frame structure design. CRC and/or checksums can be
added to the frame structure to enhance the packet transmis-
sion stability in Section V-A. Additionally, the HDR and TRN
field in Section V-A may have some improvements. The Golay
sequence used in [14]–[16] is one possible better solution: it
has a better performance at low SNR, and the packet detection
based on autocorrelation [15] can reduce power consumption
by disabling the demodulation when there is no packet.

Changing parameters on the fly. AXI peripheral [17] can
be used to change the parameters in the Const_Config on
the fly, if the board allows. Therefore, the BPSK/QPSK/mixed
mode can be switched directly, and the parameters in the de-
sign can be changed without recompiling the design, allowing
easier use in various scenarios.

Pulse shaping. The SNR performance will be improved if
appropriate pulse shaping is employed. This enhancement is
left as an exercise for the reader.

B. Possible Extensions Beyond the Experiment

The training (TRN) field can be better utilized for additional
experiments. For example, SNR can be estimated at the TRN
field, so a plot with BER against SNR can be obtained. Chan-
nel estimation algorithms [18], [19] can also be investigated
on the platform, allowing the test of the performance of the
algorithms in real-world scenarios. Besides, it is also possible
to investigate the auto generation [16] of digital circuits, so
that the design can be automatically generated according to
different requirements.
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Fig. 10. System ILA results (some signals not shown, and this is plotted with the saved CSV data). The system ILA has a window of 4,096, with the ILA
clock frequency of 32.768 MHz (twice the ADC/DAC sampling rate). The red and blue signals are at the Tx and Rx side, respectively.

X. CONCLUSION

In this paper, we implement the PSK transceiver with
modulation and coherent demodulation on SDR with FPGA.
The proposed high-level system design and communication
techniques feature carrier synchronization, symbol synchro-
nization and packet-based communication. The design is tested

and verified on a SDR platform, successfully performing
wireless transmission in 2.048 Mb/s data rate using QPSK
or 1.024 Mb/s data rate using BPSK with a 16.384 MHz
bandwidth (considering I/Q sampling) channel. As an open
source project, this paper opens up new possibilities of easy
extension of the PSK transceiver.
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Fig. 11. Top block diagram.
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Fig. 12. Rx processor block diagram.
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Fig. 13. Costas loop block diagram for carrier synchronization.

APPENDIX A
BLOCK DIAGRAMS

A. Block Diagrams Design

The top level block diagram corresponding to Fig. 1 is
shown in Fig. 11, and the Rx processor block diagram is shown
in Fig. 12. Among the Rx processor, the Costas loop and the
Gardner are both inserted block diagrams.

The Costas loop design is shown in Fig. 13, where the phase
detectors are implemented using the multiplier IP [20], and
the NCO hierarchy is mainly composed of the DDS Compiler
IP [9]. The LPF hierarchy contains a low-pass filter with 2
channels (I and Q).

More block diagrams are provided at https://github.com/
Teddy-van-Jerry/sdr-psk-fpga/tree/master/schematic [3].

https://github.com/Teddy-van-Jerry/sdr-psk-fpga/tree/master/schematic
https://github.com/Teddy-van-Jerry/sdr-psk-fpga/tree/master/schematic
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B. Debugging With Block Diagrams

AXI connections. AXI and AXI stream (AXIS) interfaces
should be carefully dealt with in the block diagram. When con-
necting one of the signal in the bus elsewhere (e.g., to ILA),
a manual connection of the signal to the corresponding AXIS
interface signal is required. Besides, when the AXI interface
is not associated with a clock (for example a combinational
logic with no register output) the FREQ_HZ property needs
to be correctly set (either using Tcl or GUI) before validating
the design.

Testbenches for block diagrams. It is relatively difficult to
simulate block diagrams than Verilog modules. The possible
way is to generate the output products and find the correct
module (name containing impl). Be careful when adding
sources for simulation, and Tcl scripts are provided in [3]
to ensure the correctness. Vivado can be buggy (mostly reluc-
tant!) when updating sources from the block diagram (for both
simulation and implementation), and therefore it is advised
to double-check the netlist file timestamp. A workaround by
forcing Vivado to update the design is adding a dummy port,
updating the module, and then removing it.

Suggestions. The project could have been more smooth if
I did without block diagrams (or for AMD to fix all these
bugs). You can directly use the Verilog modules in [3] for
your own project if you are not accustomed to block diagrams.
Nevertheless, block diagrams are at least better looking and
easier to use for a system-level project, especially when
dealing with the system on a chip (SoC).

APPENDIX B
FIGURES IN THIS PAPER

All figures except for block diagrams in this paper are
created using TikZ, part of LATEX. The way I create them is
quite interesting, involving extensive Python processing and
optimization, and you can find the source code in the GitHub
repository [3].
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