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🏞️

Shifting Landscape of Computation

The End of an Era?:

• Moore’s Law slowing (transistor density).

• Dennard scaling ended (power density).

• ⇒ Performance gains from general-purpose

CPUs/GPUs are diminishing.

The Rise of Data-Intensive Workloads:

• AI/ML (e.g., LLMs), Big Data, IoT.

• Massive computational power and efficiency.

The Need for Specialization:

• CPUs/GPUs are not always optimal.

• Domain-specific architectures offer a path to

continued performance and efficiency gains.

Attempts in Industry

New hardware targets for

existing AI/ML software:

• Google TPU

• Google hls4ml
• AMD Vitis™

• AMD FINN

• Intel OpenVINO™

https://arxiv.org/pdf/2006.10159
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vitis.html
https://xilinx.github.io/finn/
https://openvino.ai
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⚙️

What if You Could Design Your Own Chip?

Analogy

• Software developers write software for fixed hardware.

• Hardware designers design the hardware itself.

• Full-stack engineers can do both, in an orchestrated way!

For the task you are aiming, do you want the hardware work in a different way

than the general-purpose one?

CPU GPU FPGA ASIC

Flexibility Efficiency
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📐

FPGA — Field Programmable Gate Array

Programmable Hardware Fabric: Imagine a vast array of configurable logic blocks

(CLBs) and programmable interconnects.

Customization After Manufacturing: Unlike ASICs (Application-Specific Integrated

Circuits) which are fixed, FPGAs can be reprogrammed for different functionalities.

Key Advantages for Custom Architectures:

• Tailored to Algorithm: Design hardware directly for specific algorithms.

• Massive Parallelism: Exploit fine-grained parallelism inherent in algorithms.

• Low Latency: Data can flow through custom datapaths without OS overhead

or general-purpose instruction processing.

• Power Efficiency: Optimize for specific operations, reducing overhead.

🎨

“FPGAs offer a blank canvas for digital architects.”
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📐

FPGA — Field Programmable Gate Array

The different parts of an FPGA. Adapted from https://ni.scene7.com/is/image/ni/swvvifhq55851?scl=1.

https://ni.scene7.com/is/image/ni/swvvifhq55851?scl=1
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📐

FPGA — Field Programmable Gate Array

More detailed composition of an FPGA:

• Configurable Logic Blocks (CLBs): Basic building blocks of FPGAs (LUTs/FFs).

• Interconnects: Programmable connections between CLBs.

• I/O Blocks: Interfaces for external communication.

• DSP Blocks: Specialized for high-performance arithmetic operations.

• Memory Blocks: Embedded memory resources.

• Clock Management: Resources for clock distribution and management.

• Configuration Memory: Stores the configuration data for the FPGA.

• Power Management: Resources for power distribution and management.

• Embedded Processors: Some FPGAs include soft or hard processors for

general-purpose computing.
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📐

Thinking About ASIC?

ASIC = Application-Specific Integrated Circuit.

ASICs are most suitable for high-volume production with a fixed design. Typical

use cases include baseband signal processing, video encoding/decoding, and

other fixed-function accelerators.

FPGAs are Promising

• With the fast evolution of AI/ML algorithms, ASICs for fixed functions are

outdated quickly. Reprogramming with FPGAs is more flexible and

cost-effective;

• FPGAs are more capable with the advance of technology;

• FPGA + fixed ASIC cores (like video codec) is a good combination.
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🧰

HDL & HLS — Tools for Digital Design

Like writing software, we do not write the assembly code directly. Instead, we can

describe the hardware gate logic or higher-level behavior.

They are tools, and it is hardware architecture designs that matter.



Hardware Architecture
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🏗️

Hardware Architecture — Key to Efficiency

1 Parallelism: Process multiple operations simultaneously:

• Data parallelism (vector operations, etc.);

• Task parallelism (concurrent execution paths).

2 Pipelining: Overlap execution stages for higher throughput:

• Operation pipelining (breaking complex operations into stages);

• Strategic register insertion for improved timing and throughput.

3 Memory Hierarchy: Optimize data access patterns:

• Registers, caches, local buffers, external memory;

• Minimize expensive memory accesses.

4 Data Flow Optimization: Minimize data movement:

• Local processing units near data sources;

• Direct streaming between components.

5 Resource Sharing: Balance area vs. performance w/ reconfigurable modules.

6 Specialization: Custom datapaths for specific algorithms.
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📝

Example: General Matrix Multiplication (GEMM) Using Systolic Array
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Advantages of systolic array:

• Parallelism: Multiple processing

elements (PEs) work

simultaneously.

• Data Locality: Data flows

through the array, reducing

memory access time.

• Scalability: Can be expanded to

handle larger matrices.

For matrices with special

characteristics, like symmetry, we

can further optimize the systolic

array.
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🔄

Finite State Machine (FSM)

An example FSM for a coin-controlled

turnstile:

Locked Un-
locked

Coin

Coin

Push

Push

For hardware design simplicity, a 2-

or 3-process FSM is recommended

(personal preference). For a

2-process FSM, it involves

• Sequential logic: Stores the

current state.

• Combinational logic:

Determines the (i) next state

and (ii) outputs based on the

current state and inputs.



Hardware Description Language

(HDL)
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❓

What is HDL and How it Works?

Hardware Description Language (HDL): A specialized programming language used

to describe the structure and behavior of digital circuits.

Key HDLs: Verilog, VHDL, SystemVerilog.

Key Differences from Software Languages:

• Describes parallel hardware structures,

not sequential steps;

• Code represents physical circuit

components and connections;

• Timing is explicit and critical.

Abstraction Levels:

• Behavioral: Algorithmic

description;

• Register-Transfer Level

(RTL): Data flow between

registers;

• Gate-level: Logic gates and

connections.
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🛠️

Basic HDL Concepts

Examples are in Verilog.

➕

Combinational logic: direct, memoryless boolean functions.

• Output depends solely on current input values;

• No memory/state - changes propagate immediately;

• Described with continuous assignments: assign out = a & b;.

🔁

Sequential logic: state-holding elements triggered by clock signals.

• Updates state values at specific clock transitions (rising/falling edges);

• Stores values in registers/flip-flops between clock cycles;

• Described in always @ (posedge clk) blocks.
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🛠️

Basic HDL Concepts

🔑

Other Key HDL concepts:

• Modules: Encapsulation units with defined interfaces (in/out);

• Signal assignments:

• Blocking (=): Sequential evaluation (seldom used in module design);

• Non-blocking (<=): Parallel evaluation (crucial for sequential logic);

• Simulation vs. Synthesis: Not everything that simulates can be synthesized

into hardware.
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⛓️

HDL Workflow on FPGAs

1. HDL Design Entry: Write RTL code in Verilog/VHDL.

2. Functional Simulation: Verify logic functionality.

3. Synthesis: Convert HDL to optimized gate-level netlist.

4. Implementation:

• Translation: Map netlist to target device;

• Placement: Position logic elements;

• Routing: Connect logic elements.

5. Timing Analysis: Verify timing constraints (& locate critical path
🧭

).

6. Bitstream Generation: Utilize the placement constraint file.

7. Device Programming: Upload bitstream to FPGA.

For ASICs

This is even more complicated with additional steps for fabrication!



High–Level Synthesis (HLS)
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⁉️

What if I do not Want to Learn the HDL?

High–level synthesis (HLS) allows software developers to create hardware using

familiar programming languages.

Key Benefits:

• Program in C/C++ instead of

Verilog/VHDL;

• Faster development cycle (hours vs.

days);

• Higher level of abstraction;

• Easier debugging and verification;

• Software-to-hardware transform.

AMD Vitis HLS Workflow

1. Design using C++ w/ directives;

2. CSim: C++ Simulation;

3. Syn: synthesize to RTL;

4. CoSim: software–hardware

co-simulation;

5. Impl: implementation.

Parallel Programming for FPGAs: hlsbook.ucsd.edu

https://hlsbook.ucsd.edu
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⚠️

C++ but not Exactly C++

⚔️

The conflicting nature of sequential software and parallel hardware.

Key Differences:

• No dynamic memory allocation;

• Limited recursion support;

• Loops often unrolled into parallel

hardware;

• Function calls may be inlined as

circuits;

• Limited standard library support.

Common Pitfalls:

• Sequential thinking leads to poor

hardware;

• Ignoring variable bit-width

optimization;

• Inefficient loop design creates

bottlenecks;

• Non-synthesizable logics.

Important to Remember Using HLS

HLS tools translate direct algorithm implementations. Hardware-aware coding

requires understanding architecture implications to ensure performance.
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🎯

Finetuning HLS Design With Directives

HLS Pragmas/Directives: Hardware-specific annotations that guide the synthesis

process without changing functional behavior.

Common Directive Categories for Vitis HLS:

• Interface: AXI, memory ports

• #pragma HLS INTERFACE axis port=data
• Loop Optimization: unroll, pipeline, merge

• #pragma HLS PIPELINE II=1
• #pragma HLS UNROLL factor=4

• Array Optimization: partition, reshape

• #pragma HLS ARRAY_PARTITION variable=buffer dim=1 complete
• Function Inlining/Dataflow:

• #pragma HLS DATAFLOW
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🎯

Finetuning HLS Design With Directives

Impact on Design

• Resource utilization (LUT, DSP, BRAM, etc.)

• Throughput (initiation interval)

• Latency (cycle count)

• Clock frequency (due to critical path)

Trade-offs

More parallelism =⇒ higher performance but more resources.

⚠️

Caveat: HLS tools change frequently. Check out Vitis HLS User Guide (UG1399)

for latest information.

https://docs.amd.com/r/en-US/ug1399-vitis-hls
https://docs.amd.com/r/en-US/ug1399-vitis-hls


FLAMES
High-Level Synthesis🔥

Vitis HLS Support | C++14/17 | Template-Based | Header Only
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🔥

FLAMES HLS Library: Flexible Linear Algebra with Matrix-Empowered Synthesis
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🔥

FLAMES

Mat
<T,M,N,type>
T [size()] RAM

0 1 2 3
…

Tensor
<T,M,N,K,type>
T [size()] RAM

0 1 2 3
…

slice 0 slice 1 slice (K – 1)

MatRef
<T,M,N,type,...>

T* const Addr.

MatView
<T,M,N,type,...>

const T* Addr.

MatViewT
MatViewCol
MatViewDiag

…

inherit

MatRefT
MatRefRow
MatRefCols…

inherit

Read Only Read Only

Read & Write Read & Write

.ref, .
@_

.asM
at

.view, .@_, –
.asMat

.slice, [ ]

.slice
, [ ]

.view.ref

Copy

namespace flames Conversion w/ Addr. Copy
Conversion w/ Data Copy
Address Pointer
Class Inheritance

© 2025 IEEE. Reprinted, with permission, from “Flexible High-Level Synthesis Library for Linear Transformations”, Doi: 10.1109/TCSII.2024.3366282. [1]

FLAMES high-level synthesis (HLS) library provides class and template based

interface for linear algebra. [1]

https://doi.org/10.1109/TCSII.2024.3366282
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🔥

Converting Algorithm Into FLAMES HLS Code

For Neumann series approximation (NSA), A−1 = limn→∞
∑n

i=0(−D−1E)iD−1, where

A = D+ E, D , A ◦ I is the diagonal part while E is the off-diagonal part. [1]

# Formula FLAMES HLS C++ Implementation

1 D = A ◦ I auto D = mat.diagMat_();
2 E = A− D auto E = mat.offDiag_();
3 DI = D−1 auto D_I = D.inv();
4 P = −DIE auto P = -D_I * E;
5 X = P (Iter. 1) auto X = P_ = P;
6 for i = 2, . . . ,n for (int i = 2; i <= n; ++i) {
7 Pi = Pi−1P P_ *= P;
8 X = X+ Pi X += P_;
9 end }
10 A−1 = XDI + DI A_inv = X * D_I + D_I;

Classes are templated,

and there is a little C++

metaprogramming.

Overloaded functions

are provided for matrix

operations.
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🔥

Timeline Trace Example

5IF PQFSBUPS � BOE �� OPX POMZ TVQQPSUT $�� BSJUINFUJD UZQFT
 TP GPS TUE��DPNQMFY OVNCFST PS BQ@JOU BOE
BQ@GJYFE TDBMBST
 VTF �NVM JOTUFBE� 1MVT
 NJOVT
 NPEVMP PQFSBUJPOT XJMM CF JNQMFNFOUFE JO GVUVSF SFMFBTFT�

ҶөҶөҵ ��/-$3 �)� ��/-$3 �+ -�/$*)
��� .BUSJY BEEJOH B NBUSJY QFSGPSNT FMFNFOU�XJTF BEEJUJPO� .BUSJDFT PG EJѷFSFOU .BU5ZQFT DBO CF BEEFE
UPHFUIFS� /PSNBMMZ
 VTF BSF FODPVSBHFE UP VTF UIF �BEE	ʫMFGU NBUSJYʬ
ʫSJHIU NBUSJYʬ
 UP DBMDVMBUF UIF TVN PG
ʫMFGU NBUSJYʬ BOE ʫSJHIU NBUSJYʬ BOE TUPSF UIF SFTVMU JOUP UIJT� 4JNJMBS UP NBUSJY TDBMBS BEEJUJPO
 ZPV NBZ
DPOѸHVSF -&"%4@."5@1-64@6/30--@'"$503 PS -&"%4@6/30--@'"$503 UP TFU UIF QBSBMMFMJTN� 5P QFSGPSN
TFMG BEEJUJPO
 ZPV NBZ VTF �BEEʫNBUSJYʬ UP BEE UIF NBUSJY JOUP UIJT� 5IJT GVODUJPO XJMM BMTP SFUVSO B SFGFSFODF
UP UIJT�

�ՍՔ
4JNJMBSMZ
 PQFSBUPS � BOE � TIPVME POMZ CF VTFE JO JOJUJBMJ[BUJPO GPS IBSEXBSF FѺDJFODZ�

�0�/-��/ 4VCUSBDUJPO JT TJNJMBS UP BEEJUJPO� 5IF DPSSFTQPOEJOH DPOѸHVSBUJPO �QSBHNBT GPS QBSBMMFMJTN BSF
-&"%4@."5@.*/64@6/30--@'"$503 BOE -&"%4@6/30--@'"$503�

�0'/$+'4 .BUSJY NVMUJQMJDBUJPO JNQMFNFOUBUJPO JT CBTFE PO TZTUPMJD BSSBZT XIJDI BSF GSJFOEMZ UP IBSEXBSF�
5IF FODPVSBHFE HSBNNBS JT �NVM	ʫMFGU NBUSJYʬ
ʫSJHIU NBUSJYʬ
� 5IF PUIFS TZOUBY JT BMTP TJNJMBS UP BEE BOE
TVC JODMVEJOH TFMG NVMUJQMJDBUJPO XJUI ��� $POѸHVSBUJPO �QSBHNBT GPS QBSBMMFMJTN BSF -&"%4@."5@5*.&4@6/30--@'"$503
BOE -&"%4@6/30--@'"$503�

Ҷөҷ ��/-$3 �+ -�/$*).
ҶөҸ 
)1 -. �'"*-$/#(.
ҶөҸөҴ � 2/*)ӿ��#0'5 
/ -�/$1 � /#*� ԙ���Ԛ

�- +�-�/$*)

/ - ՄҴ


/ - ՄҵԀՄҷ

�0'/$+'4 џ׫%

�$)�' �-*� .. Ҳ �-$/ ���&

'JHVSF �� /4" $P4JNVMBUJPO 5JNFMJOF GPS B � c � NBUSJY XJUI � JUFSBUJPOT�

ҶөҸ 
)1 -. �'"*-$/#(. Һ

NSA CoSimulation Timeline for an 8 × 8 real matrix with 4 iterations.
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🔥

More About FLAMES

Website: flames.autohdw.com | GitHub: autohdw/flames | PDF

Hardware-friendly designs: [1]

1 Optimized RAM usage: fixing no return value optimization (RVO) problem;

2 Configurable parallelism: using pragmas to control parallelism;

3 Optimized matrix operations: function overloading.

➖

Limitations of FLAMES

• Just a proof of concept.

• Data streaming not considered.

• Pragmas configurations are mostly limited to the global scope.

https://flames.autohdw.com
https://github.com/autohdw/flames
https://wqzhao.org/assets/zhao2024flexible.pdf


Design Automation
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🪧

Sad Fact of Copilot Integration

Difficult to get AI tools to write correct & efficient implementations of hardware!

• AI models trained with little accessible RTL/HLS code;

• Hardware requires precise timing, resource awareness, and physical

constraints (case-by-case implementation & optimization);

• AI tools struggle with synthesizable vs. simulation-only constructs.

Current Best Practice

Use AI for initial templates and algorithmic sketches, but rely on hardware

expertise for implementation details and optimizations.
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💻

eDSLs — Embedded Domain Specific Languages

What are eDSLs? Specialized languages embedded within a host language.

Benefits for Hardware Design:

• Combines host language power with

hardware abstractions;

• Automated design generation and

verification;

• Tight integration with software ecosystem;

• Type safety and compile-time checks.

Notable Hardware eDSLs

• Chisel (Scala-based HDL)

• AHDW [2] (Automatic

HDW language for Verilog

target)

• PyTV/Verithon (Python-

templated Verilog)
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💻

AHDW VS Code Extension

AHDW VS Code Extension.
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💻

Elegant Command Line Interface of AHDW
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💻

PyTV — Python-Templated Verilog

GitHub: autohdw/pytv | Website: docs.rs/pytv

.pytv .v.py .v

.inst

python3

python3

//! a = 1 + 2; # Python inline
assign wire_`a` = wire_b; // Verilog with variable/expression
/*!
b = a ** 2; # Python block
*/

https://github.com/autohdw/pytv
https://docs.rs/pytv


Conclusion
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🔮

Future Possibilities

1 System Integration:

• Seamless CPU/GPU-FPGA heterogeneous platforms;

• Automated hardware–software co-design frameworks;

• System-on-chip (SoC) platforms bridging SW/HW communities;

• Other diverse applications like SmartNIC.

2 Hardware-Aware Software:

• ML frameworks with native hardware acceleration paths;

• Domain-specific compilers optimizing for custom hardware;

• Automated hardware-specific code transformations;

• Cross-layer optimizations spanning SW/HW boundaries.
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🏁

Conclusion

Key Takeaways:

1 With Moore’s Law slowing, specialized hardware offers a new performance

frontier;

2 FPGAs provide a flexible middle ground between general-purpose processors

and ASICs;

3 HDLs enable direct hardware description but require hardware thinking;

4 HLS bridges software and hardware domains, making acceleration more

accessible;

5 Design automation tools like FLAMES and eDSLs further simplify hardware

design.
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Thanks!

PDF online: https://go.wqzhao.org/hdl-hls-slides-25

https://go.wqzhao.org/hdl-hls-slides-25
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