
Efficient Hardware Design Using HDL & HLS

Bridging Software Expertise to Hardware Acceleration

Wuqiong Zhao

May 10, 2025

Department of ECE, UC San Diego

https://wqzhao.org

2

🗂️

Outline

01 Introduction

02 Hardware Architecture

03 Hardware Description Language (HDL)

04 High–Level Synthesis (HLS)

05 Design Automation

06 Conclusion

Introduction

3

🏞️

Shifting Landscape of Computation

The End of an Era?:

• Moore’s Law slowing (transistor density).

• Dennard scaling ended (power density).

• ⇒ Performance gains from general-purpose

CPUs/GPUs are diminishing.

The Rise of Data-Intensive Workloads:

• AI/ML (e.g., LLMs), Big Data, IoT.

• Massive computational power and efficiency.

The Need for Specialization:

• CPUs/GPUs are not always optimal.

• Domain-specific architectures offer a path to

continued performance and efficiency gains.

Attempts in Industry

New hardware targets for

existing AI/ML software:

• Google TPU

• Google hls4ml
• AMD Vitis™

• AMD FINN

• Intel OpenVINO™

https://arxiv.org/pdf/2006.10159
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vitis.html
https://xilinx.github.io/finn/
https://openvino.ai

4

⚙️

What if You Could Design Your Own Chip?

Analogy

• Software developers write software for fixed hardware.

• Hardware designers design the hardware itself.

• Full-stack engineers can do both, in an orchestrated way!

For the task you are aiming, do you want the hardware work in a different way

than the general-purpose one?

CPU GPU FPGA ASIC

Flexibility Efficiency

5

📐

FPGA — Field Programmable Gate Array

Programmable Hardware Fabric: Imagine a vast array of configurable logic blocks

(CLBs) and programmable interconnects.

Customization After Manufacturing: Unlike ASICs (Application-Specific Integrated

Circuits) which are fixed, FPGAs can be reprogrammed for different functionalities.

Key Advantages for Custom Architectures:

• Tailored to Algorithm: Design hardware directly for specific algorithms.

• Massive Parallelism: Exploit fine-grained parallelism inherent in algorithms.

• Low Latency: Data can flow through custom datapaths without OS overhead

or general-purpose instruction processing.

• Power Efficiency: Optimize for specific operations, reducing overhead.

🎨

“FPGAs offer a blank canvas for digital architects.”

6

📐

FPGA — Field Programmable Gate Array

The different parts of an FPGA. Adapted from https://ni.scene7.com/is/image/ni/swvvifhq55851?scl=1.

https://ni.scene7.com/is/image/ni/swvvifhq55851?scl=1

7

📐

FPGA — Field Programmable Gate Array

More detailed composition of an FPGA:

• Configurable Logic Blocks (CLBs): Basic building blocks of FPGAs (LUTs/FFs).

• Interconnects: Programmable connections between CLBs.

• I/O Blocks: Interfaces for external communication.

• DSP Blocks: Specialized for high-performance arithmetic operations.

• Memory Blocks: Embedded memory resources.

• Clock Management: Resources for clock distribution and management.

• Configuration Memory: Stores the configuration data for the FPGA.

• Power Management: Resources for power distribution and management.

• Embedded Processors: Some FPGAs include soft or hard processors for

general-purpose computing.

8

📐

Thinking About ASIC?

ASIC = Application-Specific Integrated Circuit.

ASICs are most suitable for high-volume production with a fixed design. Typical

use cases include baseband signal processing, video encoding/decoding, and

other fixed-function accelerators.

FPGAs are Promising

• With the fast evolution of AI/ML algorithms, ASICs for fixed functions are

outdated quickly. Reprogramming with FPGAs is more flexible and

cost-effective;

• FPGAs are more capable with the advance of technology;

• FPGA + fixed ASIC cores (like video codec) is a good combination.

9

🧰

HDL & HLS — Tools for Digital Design

Like writing software, we do not write the assembly code directly. Instead, we can

describe the hardware gate logic or higher-level behavior.

They are tools, and it is hardware architecture designs that matter.

Hardware Architecture

10

🏗️

Hardware Architecture — Key to Efficiency

1 Parallelism: Process multiple operations simultaneously:

• Data parallelism (vector operations, etc.);

• Task parallelism (concurrent execution paths).

2 Pipelining: Overlap execution stages for higher throughput:

• Operation pipelining (breaking complex operations into stages);

• Strategic register insertion for improved timing and throughput.

3 Memory Hierarchy: Optimize data access patterns:

• Registers, caches, local buffers, external memory;

• Minimize expensive memory accesses.

4 Data Flow Optimization: Minimize data movement:

• Local processing units near data sources;

• Direct streaming between components.

5 Resource Sharing: Balance area vs. performance w/ reconfigurable modules.

6 Specialization: Custom datapaths for specific algorithms.

11

📝

Example: General Matrix Multiplication (GEMM) Using Systolic Array

PE11

PE12

PE13

PE14

PE21

PE22

PE23

PE24

PE31

PE32

PE33

PE34

PE41

PE42

PE43

PE44

a11

a21

a31

a41

a12

a22

a32

a42

a13

a23

a33

a43

a14

a24

a34

a44

0

0

0

0

00

b11

b21

b31

b41

b12

b22

b32

b42

b13

b23

b33

b43

b14

b24

b34

b44

0 0 0

0 0

0

Advantages of systolic array:

• Parallelism: Multiple processing

elements (PEs) work

simultaneously.

• Data Locality: Data flows

through the array, reducing

memory access time.

• Scalability: Can be expanded to

handle larger matrices.

For matrices with special

characteristics, like symmetry, we

can further optimize the systolic

array.

12

🔄

Finite State Machine (FSM)

An example FSM for a coin-controlled

turnstile:

Locked Un-
locked

Coin

Coin

Push

Push

For hardware design simplicity, a 2-

or 3-process FSM is recommended

(personal preference). For a

2-process FSM, it involves

• Sequential logic: Stores the

current state.

• Combinational logic:

Determines the (i) next state

and (ii) outputs based on the

current state and inputs.

Hardware Description Language

(HDL)

13

❓

What is HDL and How it Works?

Hardware Description Language (HDL): A specialized programming language used

to describe the structure and behavior of digital circuits.

Key HDLs: Verilog, VHDL, SystemVerilog.

Key Differences from Software Languages:

• Describes parallel hardware structures,

not sequential steps;

• Code represents physical circuit

components and connections;

• Timing is explicit and critical.

Abstraction Levels:

• Behavioral: Algorithmic

description;

• Register-Transfer Level

(RTL): Data flow between

registers;

• Gate-level: Logic gates and

connections.

14

🛠️

Basic HDL Concepts

Examples are in Verilog.

➕

Combinational logic: direct, memoryless boolean functions.

• Output depends solely on current input values;

• No memory/state - changes propagate immediately;

• Described with continuous assignments: assign out = a & b;.

🔁

Sequential logic: state-holding elements triggered by clock signals.

• Updates state values at specific clock transitions (rising/falling edges);

• Stores values in registers/flip-flops between clock cycles;

• Described in always @ (posedge clk) blocks.

15

🛠️

Basic HDL Concepts

🔑

Other Key HDL concepts:

• Modules: Encapsulation units with defined interfaces (in/out);

• Signal assignments:

• Blocking (=): Sequential evaluation (seldom used in module design);

• Non-blocking (<=): Parallel evaluation (crucial for sequential logic);

• Simulation vs. Synthesis: Not everything that simulates can be synthesized

into hardware.

16

⛓️

HDL Workflow on FPGAs

1. HDL Design Entry: Write RTL code in Verilog/VHDL.

2. Functional Simulation: Verify logic functionality.

3. Synthesis: Convert HDL to optimized gate-level netlist.

4. Implementation:

• Translation: Map netlist to target device;

• Placement: Position logic elements;

• Routing: Connect logic elements.

5. Timing Analysis: Verify timing constraints (& locate critical path
🧭

).

6. Bitstream Generation: Utilize the placement constraint file.

7. Device Programming: Upload bitstream to FPGA.

For ASICs

This is even more complicated with additional steps for fabrication!

High–Level Synthesis (HLS)

17

⁉️

What if I do not Want to Learn the HDL?

High–level synthesis (HLS) allows software developers to create hardware using

familiar programming languages.

Key Benefits:

• Program in C/C++ instead of

Verilog/VHDL;

• Faster development cycle (hours vs.

days);

• Higher level of abstraction;

• Easier debugging and verification;

• Software-to-hardware transform.

AMD Vitis HLS Workflow

1. Design using C++ w/ directives;

2. CSim: C++ Simulation;

3. Syn: synthesize to RTL;

4. CoSim: software–hardware

co-simulation;

5. Impl: implementation.

Parallel Programming for FPGAs: hlsbook.ucsd.edu

https://hlsbook.ucsd.edu

18

⚠️

C++ but not Exactly C++

⚔️

The conflicting nature of sequential software and parallel hardware.

Key Differences:

• No dynamic memory allocation;

• Limited recursion support;

• Loops often unrolled into parallel

hardware;

• Function calls may be inlined as

circuits;

• Limited standard library support.

Common Pitfalls:

• Sequential thinking leads to poor

hardware;

• Ignoring variable bit-width

optimization;

• Inefficient loop design creates

bottlenecks;

• Non-synthesizable logics.

Important to Remember Using HLS

HLS tools translate direct algorithm implementations. Hardware-aware coding

requires understanding architecture implications to ensure performance.

19

🎯

Finetuning HLS Design With Directives

HLS Pragmas/Directives: Hardware-specific annotations that guide the synthesis

process without changing functional behavior.

Common Directive Categories for Vitis HLS:

• Interface: AXI, memory ports

• #pragma HLS INTERFACE axis port=data
• Loop Optimization: unroll, pipeline, merge

• #pragma HLS PIPELINE II=1
• #pragma HLS UNROLL factor=4

• Array Optimization: partition, reshape

• #pragma HLS ARRAY_PARTITION variable=buffer dim=1 complete
• Function Inlining/Dataflow:

• #pragma HLS DATAFLOW

20

🎯

Finetuning HLS Design With Directives

Impact on Design

• Resource utilization (LUT, DSP, BRAM, etc.)

• Throughput (initiation interval)

• Latency (cycle count)

• Clock frequency (due to critical path)

Trade-offs

More parallelism =⇒ higher performance but more resources.

⚠️

Caveat: HLS tools change frequently. Check out Vitis HLS User Guide (UG1399)

for latest information.

https://docs.amd.com/r/en-US/ug1399-vitis-hls
https://docs.amd.com/r/en-US/ug1399-vitis-hls

FLAMES
High-Level Synthesis🔥

Vitis HLS Support | C++14/17 | Template-Based | Header Only

21

🔥

FLAMES HLS Library: Flexible Linear Algebra with Matrix-Empowered Synthesis

22

🔥

FLAMES

Mat
<T,M,N,type>
T [size()] RAM

0 1 2 3
…

Tensor
<T,M,N,K,type>
T [size()] RAM

0 1 2 3
…

slice 0 slice 1 slice (K – 1)

MatRef
<T,M,N,type,...>

T* const Addr.

MatView
<T,M,N,type,...>

const T* Addr.

MatViewT
MatViewCol
MatViewDiag

…

inherit

MatRefT
MatRefRow
MatRefCols…

inherit

Read Only Read Only

Read & Write Read & Write

.ref, .
@_

.asM
at

.view, .@_, –
.asMat

.slice, []

.slice
, []

.view.ref

Copy

namespace flames Conversion w/ Addr. Copy
Conversion w/ Data Copy
Address Pointer
Class Inheritance

© 2025 IEEE. Reprinted, with permission, from “Flexible High-Level Synthesis Library for Linear Transformations”, Doi: 10.1109/TCSII.2024.3366282. [1]

FLAMES high-level synthesis (HLS) library provides class and template based

interface for linear algebra. [1]

https://doi.org/10.1109/TCSII.2024.3366282

23

🔥

Converting Algorithm Into FLAMES HLS Code

For Neumann series approximation (NSA), A−1 = limn→∞
∑n

i=0(−D−1E)iD−1, where

A = D+ E, D , A ◦ I is the diagonal part while E is the off-diagonal part. [1]

Formula FLAMES HLS C++ Implementation

1 D = A ◦ I auto D = mat.diagMat_();
2 E = A− D auto E = mat.offDiag_();
3 DI = D−1 auto D_I = D.inv();
4 P = −DIE auto P = -D_I * E;
5 X = P (Iter. 1) auto X = P_ = P;
6 for i = 2, . . . ,n for (int i = 2; i <= n; ++i) {
7 Pi = Pi−1P P_ *= P;
8 X = X+ Pi X += P_;
9 end }
10 A−1 = XDI + DI A_inv = X * D_I + D_I;

Classes are templated,

and there is a little C++

metaprogramming.

Overloaded functions

are provided for matrix

operations.

24

🔥

Timeline Trace Example

5IF PQFSBUPS � BOE �� OPX POMZ TVQQPSUT $�� BSJUINFUJD UZQFT
 TP GPS TUE��DPNQMFY OVNCFST PS BQ@JOU BOE
BQ@GJYFE TDBMBST
 VTF �NVM JOTUFBE� 1MVT
 NJOVT
 NPEVMP PQFSBUJPOT XJMM CF JNQMFNFOUFE JO GVUVSF SFMFBTFT�

ҶөҶөҵ ��/-$3 �)� ��/-$3 �+ -�/$*)
��� .BUSJY BEEJOH B NBUSJY QFSGPSNT FMFNFOU�XJTF BEEJUJPO� .BUSJDFT PG EJѷFSFOU .BU5ZQFT DBO CF BEEFE
UPHFUIFS� /PSNBMMZ
 VTF BSF FODPVSBHFE UP VTF UIF �BEE	ʫMFGU NBUSJYʬ
ʫSJHIU NBUSJYʬ
 UP DBMDVMBUF UIF TVN PG
ʫMFGU NBUSJYʬ BOE ʫSJHIU NBUSJYʬ BOE TUPSF UIF SFTVMU JOUP UIJT� 4JNJMBS UP NBUSJY TDBMBS BEEJUJPO
 ZPV NBZ
DPOѸHVSF -&"%4@."5@1-64@6/30--@'"$503 PS -&"%4@6/30--@'"$503 UP TFU UIF QBSBMMFMJTN� 5P QFSGPSN
TFMG BEEJUJPO
 ZPV NBZ VTF �BEEʫNBUSJYʬ UP BEE UIF NBUSJY JOUP UIJT� 5IJT GVODUJPO XJMM BMTP SFUVSO B SFGFSFODF
UP UIJT�

�ՍՔ
4JNJMBSMZ
 PQFSBUPS � BOE � TIPVME POMZ CF VTFE JO JOJUJBMJ[BUJPO GPS IBSEXBSF FѺDJFODZ�

�0�/-��/ 4VCUSBDUJPO JT TJNJMBS UP BEEJUJPO� 5IF DPSSFTQPOEJOH DPOѸHVSBUJPO �QSBHNBT GPS QBSBMMFMJTN BSF
-&"%4@."5@.*/64@6/30--@'"$503 BOE -&"%4@6/30--@'"$503�

�0'/$+'4 .BUSJY NVMUJQMJDBUJPO JNQMFNFOUBUJPO JT CBTFE PO TZTUPMJD BSSBZT XIJDI BSF GSJFOEMZ UP IBSEXBSF�
5IF FODPVSBHFE HSBNNBS JT �NVM	ʫMFGU NBUSJYʬ
ʫSJHIU NBUSJYʬ
� 5IF PUIFS TZOUBY JT BMTP TJNJMBS UP BEE BOE
TVC JODMVEJOH TFMG NVMUJQMJDBUJPO XJUI ��� $POѸHVSBUJPO �QSBHNBT GPS QBSBMMFMJTN BSF -&"%4@."5@5*.&4@6/30--@'"$503
BOE -&"%4@6/30--@'"$503�

Ҷөҷ ��/-$3 �+ -�/$*).
ҶөҸ
)1 -. �'"*-$/#(.
ҶөҸөҴ � 2/*)ӿ��#0'5
/ -�/$1 � /#*� ԙ���Ԛ

�- +�-�/$*)

/ - ՄҴ

/ - ՄҵԀՄҷ

�0'/$+'4 џ׫%

�$)�' �-*� .. Ҳ �-$/ ���&

'JHVSF �� /4" $P4JNVMBUJPO 5JNFMJOF GPS B � c � NBUSJY XJUI � JUFSBUJPOT�

ҶөҸ
)1 -. �'"*-$/#(. Һ

NSA CoSimulation Timeline for an 8 × 8 real matrix with 4 iterations.

25

🔥

More About FLAMES

Website: flames.autohdw.com | GitHub: autohdw/flames | PDF

Hardware-friendly designs: [1]

1 Optimized RAM usage: fixing no return value optimization (RVO) problem;

2 Configurable parallelism: using pragmas to control parallelism;

3 Optimized matrix operations: function overloading.

➖

Limitations of FLAMES

• Just a proof of concept.

• Data streaming not considered.

• Pragmas configurations are mostly limited to the global scope.

https://flames.autohdw.com
https://github.com/autohdw/flames
https://wqzhao.org/assets/zhao2024flexible.pdf

Design Automation

26

🪧

Sad Fact of Copilot Integration

Difficult to get AI tools to write correct & efficient implementations of hardware!

• AI models trained with little accessible RTL/HLS code;

• Hardware requires precise timing, resource awareness, and physical

constraints (case-by-case implementation & optimization);

• AI tools struggle with synthesizable vs. simulation-only constructs.

Current Best Practice

Use AI for initial templates and algorithmic sketches, but rely on hardware

expertise for implementation details and optimizations.

27

💻

eDSLs — Embedded Domain Specific Languages

What are eDSLs? Specialized languages embedded within a host language.

Benefits for Hardware Design:

• Combines host language power with

hardware abstractions;

• Automated design generation and

verification;

• Tight integration with software ecosystem;

• Type safety and compile-time checks.

Notable Hardware eDSLs

• Chisel (Scala-based HDL)

• AHDW [2] (Automatic

HDW language for Verilog

target)

• PyTV/Verithon (Python-

templated Verilog)

28

💻

AHDW VS Code Extension

AHDW VS Code Extension.

29

💻

Elegant Command Line Interface of AHDW

30

💻

PyTV — Python-Templated Verilog

GitHub: autohdw/pytv | Website: docs.rs/pytv

.pytv .v.py .v

.inst

python3

python3

//! a = 1 + 2; # Python inline
assign wire_`a` = wire_b; // Verilog with variable/expression
/*!
b = a ** 2; # Python block
*/

https://github.com/autohdw/pytv
https://docs.rs/pytv

Conclusion

31

🔮

Future Possibilities

1 System Integration:

• Seamless CPU/GPU-FPGA heterogeneous platforms;

• Automated hardware–software co-design frameworks;

• System-on-chip (SoC) platforms bridging SW/HW communities;

• Other diverse applications like SmartNIC.

2 Hardware-Aware Software:

• ML frameworks with native hardware acceleration paths;

• Domain-specific compilers optimizing for custom hardware;

• Automated hardware-specific code transformations;

• Cross-layer optimizations spanning SW/HW boundaries.

32

🏁

Conclusion

Key Takeaways:

1 With Moore’s Law slowing, specialized hardware offers a new performance

frontier;

2 FPGAs provide a flexible middle ground between general-purpose processors

and ASICs;

3 HDLs enable direct hardware description but require hardware thinking;

4 HLS bridges software and hardware domains, making acceleration more

accessible;

5 Design automation tools like FLAMES and eDSLs further simplify hardware

design.

33

References

W. Zhao, C. Li, Z. Ji, Z. Guo, X. Chen, Y. You, Y. Huang, X. You, and C. Zhang,

“Flexible high-level synthesis library for linear transformations,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 7, pp.

3348–3352, Jul. 2024.

W. Zhao, C. Li, Z. Ji, Y. You, X. You, and C. Zhang, “Automatic timing-driven

top-level hardware design for digital signal processing,” in 2023 IEEE 15th

International Conference on ASIC (ASICON), Nanjing, China, Oct. 2023.

33

Thanks!

PDF online: https://go.wqzhao.org/hdl-hls-slides-25

https://go.wqzhao.org/hdl-hls-slides-25

	Introduction
	Hardware Architecture
	Hardware Description Language (HDL)
	High–Level Synthesis (HLS)
	FLAMES HLS Library

	Design Automation
	Conclusion

