UC SanDiego

Efficient Hardware Design Using HDL & HLS

Bridging Software Expertise to Hardware Acceleration

Wugiong Zhao
May 10, 2025

Department of ECE, UC San Diego

https://wqzhao.org

i Outline

m Introduction

a Hardware Architecture

a Hardware Description Language (HDL)
High-Level Synthesis (HLS)

Design Automation

E Conclusion

Introduction

®3 Shifting Landscape of Computation

The End of an Era?: Attempts in Industry

- Moore’s Law slowing (transistor density). New hardware targets for
- Dennard scaling ended (power density). existing Al/ML software:
- = Performance gains from general-purpose

CPUs/GPUs are diminishing. - Google TPU

- Google hls4ml 7

, - AMD Vitis™ 7
- AlI/ML (e.g,, LLMs), Big Data, loT. . AMD FINN 2
- Massive computational power and efficiency. - Intel OpenVINO™ 2

The Rise of Data-Intensive Workloads:

The Need for Specialization:

- CPUs/GPUs are not always optimal.
- Domain-specific architectures offer a path to
continued performance and efficiency gains.

https://arxiv.org/pdf/2006.10159
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vitis.html
https://xilinx.github.io/finn/
https://openvino.ai

What if You Could Design Your Own Chip?

Analogy

- Software developers write software for fixed hardware.
- Hardware designers design the hardware itself.
- Full-stack engineers can do both, in an orchestrated way!

For the task you are aiming, do you want the hardware work in a different way
than the general-purpose one?

@ cPU 00) GPU Ol rrca ﬂ ASIC

FLEXIBILITY EFFICIENCY

N FPGA — Field Programmable Gate Array

Programmable Hardware Fabric: Imagine a vast array of configurable logic blocks
(CLBs) and programmable interconnects.

Customization After Manufacturing: Unlike ASICs (Application-Specific Integrated
Circuits) which are fixed, FPGAs can be reprogrammed for different functionalities.

Key Advantages for Custom Architectures:

- Tailored to Algorithm: Design hardware directly for specific algorithms.

- Massive Parallelism: Exploit fine-grained parallelism inherent in algorithms.

- Low Latency: Data can flow through custom datapaths without OS overhead
or general-purpose instruction processing.

- Power Efficiency: Optimize for specific operations, reducing overhead.

@& “FPGAs offer a blank canvas for digital architects.”

N FPGA — Field Programmable Gate Array

. L L L / i I S
oo Sl BB ODOD0 |/ _Lﬂ——.
pan] D’d COO00 L, tLj [
] S0 00000 — e
_| —TfpoBovono d| | ept
Programmable s 00000000 ¢ 1/0 Blocks
Interconnect Q000 DO0N0 8
— .«__»J}DDODOOJO{;
i "f,rv“h THOOOR0N0 6
e ﬁ' /e £ o £ 50 63 £ £

50

U

—‘: E}L 'x'_r /

Logic Blocks

The different parts of an FPGA. Adapted from https://ni.scene7.com/is/image/ni/swvvifhq55851?scl=1.

https://ni.scene7.com/is/image/ni/swvvifhq55851?scl=1

N FPGA — Field Programmable Gate Array

More detailed composition of an FPGA:

- Configurable Logic Blocks (CLBs): Basic building blocks of FPGAs (LUTs/FFs).

- Interconnects: Programmable connections between CLBs.

- 1/0 Blocks: Interfaces for external communication.

- DSP Blocks: Specialized for high-performance arithmetic operations.

- Memory Blocks: Embedded memory resources.

- Clock Management: Resources for clock distribution and management.

- Configuration Memory: Stores the configuration data for the FPGA.

- Power Management: Resources for power distribution and management.

- Embedded Processors: Some FPGAs include soft or hard processors for
general-purpose computing.

A Thinking About ASIC?

ASIC = Application-Specific Integrated Circuit.

ASICs are most suitable for high-volume production with a fixed design. Typical
use cases include baseband signal processing, video encoding/decoding, and
other fixed-function accelerators.

FPGAs are Promising

- With the fast evolution of Al/ML algorithms, ASICs for fixed functions are

outdated quickly. Reprogramming with FPGAs is more flexible and
cost-effective;

- FPGAs are more capable with the advance of technology;
- FPGA + fixed ASIC cores (like video codec) is a good combination.

= HDL & HLS — Tools for Digital Design

Like writing software, we do not write the assembly code directly. Instead, we can
describe the hardware gate logic or higher-level behavior.

They are tools, and it is hardware architecture designs that matter.

Hardware Architecture

7 Hardware Architecture — Key to Efficiency

@ rarallelism: Process multiple operations simultaneously:

- Data parallelism (vector operations, etc.);
- Task parallelism (concurrent execution paths).
@ Pipelining: Overlap execution stages for higher throughput:
- Operation pipelining (breaking complex operations into stages);
- Strategic register insertion for improved timing and throughput.
€ Memory Hierarchy: Optimize data access patterns:

- Registers, caches, local buffers, external memory;
- Minimize expensive memory accesses.

@ Data Flow Optimization: Minimize data movement:
- Local processing units near data sources;
- Direct streaming between components.
© Resource Sharing: Balance area vs. performance w/ reconfigurable modules.
O specialization: Custom datapaths for specific algorithms. 10

Example: General Matrix Multiplication (GEMM) Using Systolic Array

by Advantages of systolic array:
o b - Parallelism: Multiple processing
b12 b23 b34
by by bn bu elements (PEs) work
by by bus simultaneously.
bsy be - Data Locality: Data flows
bu through the array, reducing
4 v ¥ v memory access time.
an G2 @13 G —>|PEqn | PEx [-{PEs -|PE4 - Scalability: Can be expanded to
v Y Y Y handle larger matrices.

Ay1 A Q23 Aoy —> PE12 > PEzz > PE32 > PEz.z

For matrices with special
Ga Q53 G Gy SlpeslepeslslPEsls]pE,| characteristics, like symmetry, we
7 7 7 7~ can further optimize the systolic

Q41 Ay Q43 Auy - PEM B PEzz, B PE34 > PEz,z, array

I

& Finite State Machine (FSM)

An example FSM for a coin-controlled
turnstile:

For hardware design simplicity, a 2-
or 3-process FSM is recommended
(personal preference). For a
2-process FSM, it involves

- Sequential logic: Stores the
current state.

- Combinational logic:
Determines the (i) next state
and (ii) outputs based on the
current state and inputs.

12

Hardware Description Language
(HDL)

What is HDL and How it Works?

Hardware Description Language (HDL): A specialized programming language used
to describe the structure and behavior of digital circuits.

Key HDLs: Verilog, VHDL, SystemVerilog. Abstraction Levels:

- Behavioral: Algorithmic
description;

- Register-Transfer Level
(RTL): Data flow between
registers;

- Gate-level: Logic gates and
connections.

Key Differences from Software Languages:

- Describes parallel hardware structures,
not sequential steps;

- Code represents physical circuit
components and connections;

- Timing is explicit and critical.

13

% Basic HDL Concepts

Examples are in Verilog.

+ Combinational logic: direct, memoryless boolean functions.

- Output depends solely on current input values;
- No memory/state - changes propagate immediately;
- Described with continuous assignments: assign out = a & b;.

Sequential logic: state-holding elements triggered by clock signals.

- Updates state values at specific clock transitions (rising/falling edges);
- Stores values in registers/flip-flops between clock cycles;
- Described in always @ (posedge clk) blocks.

14

<

% Basic HDL Concepts

/° Other Key HDL concepts:

- Modules: Encapsulation units with defined interfaces (in/out);
- Signal assignments:

- Blocking (=): Sequential evaluation (seldom used in module design);
- Non-blocking (<=): Parallel evaluation (crucial for sequential logic);

- Simulation vs. Synthesis: Not everything that simulates can be synthesized
into hardware.

15

4% HDL Workflow on FPGAs

HDL Design Entry: Write RTL code in Verilog/VHDL.
Functional Simulation: Verify logic functionality.

Synthesis: Convert HDL to optimized gate-level netlist.
Implementation:

- Translation: Map netlist to target device;

- Placement: Position logic elements;

- Routing: Connect logic elements.
5. Timing Analysis: Verify timing constraints (& locate critical path).
6. Bitstream Generation: Utilize the placement constraint file.
7. Device Programming: Upload bitstream to FPGA.

= 8 N =

For ASICs

This is even more complicated with additional steps for fabrication!
16

High-Level Synthesis (HLS)

What if | do not Want to Learn the HDL?

High-level synthesis (HLS) allows software developers to create hardware using
familiar programming languages.

Key Benefits: AMD Vitis HLS Workflow

- Program in C/C++ instead of
Verilog/VHDL,

- Faster development cycle (hours vs.
days);

- Higher level of abstraction;

- Easier debugging and verification;

- Software-to-hardware transform.

Parallel Programming for FPGAs: hlsbook.ucsd.edu 7

Design using C++ w/ directives;
CSim: C++ Simulation;

Syn: synthesize to RTL;

CoSim: software-hardware
co-simulation;

5. Impl: implementation.

& W N =

7

https://hlsbook.ucsd.edu

A C++ but not Exactly C++

X The conflicting nature of sequential software and parallel hardware.

Key Differences: Common Pitfalls:

- No dynamic memory allocation; - Sequential thinking leads to poor

- Limited recursion support; hardware;

- Loops often unrolled into parallel - Ignoring variable bit-width
hardware; optimization;

- Function calls may be inlined as - Inefficient loop design creates
circuits; bottlenecks;

- Limited standard library support. - Non-synthesizable logics.

Important to Remember Using HLS

HLS tools translate direct algorithm implementations. Hardware-aware coding
requires understanding architecture implications to ensure performance.

o Finetuning HLS Design With Directives

HLS Pragmas/Directives: Hardware-specific annotations that guide the synthesis
process without changing functional behavior.

Common Directive Categories for Vitis HLS:

- Interface: AXI, memory ports
- #pragma HLS INTERFACE axis port=data
- Loop Optimization: unroll, pipeline, merge
- #pragma HLS PIPELINE II=1
- #pragma HLS UNROLL factor=4
- Array Optimization: partition, reshape
- #pragma HLS ARRAY_PARTITION variable=buffer dim=1 complete
- Function Inlining/Dataflow:

« #pragma HLS DATAFLOW ”

o Finetuning HLS Design With Directives

Impact on Design

- Resource utilization (LUT, DSP, BRAM, etc.)
- Throughput (initiation interval)

- Latency (cycle count)

- Clock frequency (due to critical path)

More parallelism = higher performance but more resources.

1. Caveat: HLS tools change frequently. Check out Vitis HLS User Guide (UG1399) C7
for latest information.

20

https://docs.amd.com/r/en-US/ug1399-vitis-hls
https://docs.amd.com/r/en-US/ug1399-vitis-hls

& FLAMES HLS Library: Flexible Linear Algebra with Matrix-Empowered Synthesis

FLAMES

Q&0 High-Level Synthesis

Vitis HLS Support | C++14/17 | Template-Based | Header Only

& FLAMES

namespace flames ——————— Conversion w/ Addr. Copy
MatRefT P MatRef ~—————— Conversion w/ Data Copy
MatRefRow <|nhent ———— > Address Pointer
Copy MatRefCols L _<_T_,_M_,_I\I_,_t_y_p_e_,_._._._> > Class Inheritance
m T* const . s/
refs Q@ Addr. slice, [
Mat ot Tensor
<T,M, N, type> ’ <T,M,N, K, type>
Read & Write ref||.view Read & Write
Vi
% Ir aice
. —
‘ASMay MatView e 0 shce T STice (K1)
MatViewT o <T,M,N, type,...>
MatviewCol | jinherit|-=----"=-"""22-27--
MatViewDiag const T*
Read Only : Read Only

© 2025 IEEE. Reprinted, with permission, from “Flexible High-Level Synthesis Library for Linear Transformations”, Dot: 101109/TCSI1.2024.3366282. [1]

FLAMES high-level synthesis (HLS) library provides class and template based
interface for linear algebra. [1] -

https://doi.org/10.1109/TCSII.2024.3366282

& Converting Algorithm Into FLAMES HLS Code

For Neumann series approximation (NSA), A=" = limy_00 Y./ o(~D~'E)'D~", where
A=D+E D=2 Aolisthe diagonal part while E is the off-diagonal part. [1]

Formula FLAMES HLS C++ Implementation

1 D=Aol auto D = mat.diagMat_();

2 E=A-D auto E = mat.offDiag_();

3 D/=D"" auto D_I = D.inv();

4L P—_DE auto P = -D_T * E; Classes are templated,
5 X=P(lter1) auto X = P_ = P; and there is a little C++
6 fori=2,...,n for (int i = 2; i <= n; ++1i) { metaprogramming.

7 P =pP-'P P_ *= P;

8 X=X+ P X += P_; Overloaded functions

9 end } are provided for matrix
10 A'=XD,+D, A_inv = X = D_I + D_I;

operations.

23

& Timeline Trace Example

Fle Edit Project Solution Window Help

cie-is-ia-id-is

s home/tvj/Documents/LEADS/HL:

amples/leads_hls)

5 [[@leads hiscpp 2 test csimlog

Blaaes

r)

votest
@ ¥ o inVNSA_Mat_ap_fixed 32 165_
7 o invusi, it 3p fced 32,15
* @ SYSTOLIC ARRAY_MAT MUL
© at systlicArraMuL Matvieuc
© VAt systlicArrayMuL MatViews
 © p_systlicArtaul Mat Mt 10
@ SYSTOLIC ARRAY_MAT_MUL
< Mat_systolicArraul st Mt
o Mat systolichrraMuL et Mat_
+ + add ot Matop_fied 32.16.5.3.

® viTis_Loop_a4s_1
¥ © add_Mat_Mat_ap_fixed_32_16
@ vimis_Loop_a4s 1

v G MATINV_NsA
v o p_systolicarrayMul_Mat_Mat_ap_f
» @ SYSTOLIC_ARRAY_MAT_MUL
 add_Mat_Mat_ap_fixed_32_16.5.

& & Timeline Trace 1

Preparation

=

Iter #1

Multiply D™

C

il

) Final Process & Write Back

NSA CoSimulation Timeline for an 8 X 8 real matrix with 4 iterations.

& More About FLAMES

Website: flames.autohdw.comt? | GitHub: autohdw/flames ? | PDF?

Hardware-friendly designs: [1]

Optimized RAM usage: fixing no return value optimization (RVO) problem:
Configurable parallelism: using pragmas to control parallelism;

Optimized matrix operations: function overloading.

— Limitations of FLAMES

- Just a proof of concept.
- Data streaming not considered.
- Pragmas configurations are mostly limited to the global scope.

25

https://flames.autohdw.com
https://github.com/autohdw/flames
https://wqzhao.org/assets/zhao2024flexible.pdf

Design Automation

M Sad Fact of Copilot Integration

Difficult to get Al tools to write correct & efficient implementations of hardware!

- Al models trained with little accessible RTL/HLS code;

- Hardware requires precise timing, resource awareness, and physical
constraints (case-by-case implementation & optimization);

- Al tools struggle with synthesizable vs. simulation-only constructs.

Current Best Practice
Use Al for initial templates and algorithmic sketches, but rely on hardware
expertise for implementation details and optimizations.

26

== €DSLs — Embedded Domain Specific Languages

What are eDSLs? Specialized languages embedded within a host language.

Benefits for Hardware Design: Notable Hardware eDSLs

- Chisel (Scala-based HDL)

- AHDW [2] (Automatic
HDW language for Verilog
target)

- PyTV/Verithon (Python-
templated Verilog)

- Combines host language power with
hardware abstractions;

- Automated design generation and
verification;

- Tight integration with software ecosystem;

- Type safety and compile-time checks.

27

== AHDW VS Code Extension

AHDWmake.txt — ahdw

EXTENSIONS Y O [AHDWmake.txt X [example.ahdw M

test > example1 > [AHDWmake.txt
ahdw_minimum_required (VERSION 0.1.0)
« INSTALLED 53 project(examplel VERSION 0.1.0)

Search Extensions in Marketplace

AHDW D ams
AHDW Language Support
Teddy van Jerry

set(variable TRUE)

autoDocstring - Python Doc... source(example.ahdw)
Generates python docstrings ato...
Nils Werner

param(keyl TYPE STRING DEFAULT "default value")

Better C++ Syntax param(key2 TYPE INT REQUIRED)

Jisle=catcdecitisc e param(key3 TYPE UNSIGNED DEFAULT 4 MIN 2 MAX 8 STEP 2)
Jett Hykin
param(key4
& ClC++ D57ms TYPE UNSIGNED
v RECOMMENDED 8 DEFAULT 4

p g3 markdownlint DASM * 45 PATTERN "(2]4|8|16)"

BLE \farkdown linting and style checki..

David Anson Install :
if(variable)

Git History 75M * 4.5 i
= View git log, file history, compare b. message("AHDW is powerful!")
Don Jayamanne Install endif()

* s it Droiont Mo oy

gl 4o
X Pmasterr O ®0AO0D3 @ CMake: [Release]: Ready ¥ [Clang 13.0.0 arm64-apple-darwin20.4.0] 2 Build [al] & [

AHDW VS Code Extension.

Elegant Command Line Interface of AHDW

[AHDW] Project name set to 'examplel' (version 0.1.0).
[AHDW] AHDW Sources:

[AHDW] $ example.ahdw

[AHDW] Parameter 'keyl':

[AHDW] * TYPE: STRING

[AHDW] * DEFAULT: default value

[AHDW] * REQUIRED: FALSE

[AHDW] > VALUE: example (user-specified)

[MESSAGE] AHDW is powerful!

[AHDW] Processing AHDW Source 'example.ahdw' ...

[AHDW] Set output directory as 'ahdw_out'.

[AHDW] Set output file name as 'file name example_1 5.v'.
[ERROR] Syntax error in 'example.ahdw' (line 10) [Cannot parse expression]:
[ERROR] module module_{{ax2}}_foo #(

[ERROR] s

== PYTV — Python-Templated Verilog

GitHub: autohdw/pytv Z | Website: docs.rs/pytv

python3
.pytv > .V.py > v
python3
Y
.inst

//) a =1+ 2; # Python inline
assign wire_"a’ = wire_b; // Verilog with variable/expression
/*!
b =a *x 2; # Python block
*/

30

https://github.com/autohdw/pytv
https://docs.rs/pytv

Conclusion

@ Future Possibilities

@ System Integration:

- Seamless CPU/GPU-FPGA heterogeneous platforms;

- Automated hardware-software co-design frameworks;

- System-on-chip (SoC) platforms bridging SW/HW communities;
- Other diverse applications like SmartNIC.

@ Hardware-Aware Software:

- ML frameworks with native hardware acceleration paths;
- Domain-specific compilers optimizing for custom hardware;
- Automated hardware-specific code transformations;
- Cross-layer optimizations spanning SW/HW boundaries.
31

w Conclusion

Key Takeaways:

@ with Moore's Law slowing, specialized hardware offers a new performance
frontier;

@ FPGAs provide a flexible middle ground between general-purpose processors
and ASICs;

© HDLs enable direct hardware description but require hardware thinking;

@ HLS bridges software and hardware domains, making acceleration more
accessible;
@ Design automation tools like FLAMES and eDSLs further simplify hardware
design.
32

References

@ W.Zhao, C. Li, Z.)i, Z. Guo, X. Chen, Y. You, Y. Huang, X. You, and C. Zhang,
“Flexible high-level synthesis library for linear transformations,” [EEE
Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 7, pp.
3348-3352, Jul. 2024.

@ W.Zhao, C. Li, Z.Ji, Y. You, X. You, and C. Zhang, “Automatic timing-driven
top-level hardware design for digital signal processing,” in 2023 [EEE 15th
International Conference on ASIC (ASICON), Nanjing, China, Oct. 2023.

33

Thanks!

PDF online: https://go.wgzhao.org/hdl-hls-slides-25

https://go.wqzhao.org/hdl-hls-slides-25

	Introduction
	Hardware Architecture
	Hardware Description Language (HDL)
	High–Level Synthesis (HLS)
	FLAMES HLS Library

	Design Automation
	Conclusion

