
ARM Lite: Pipelined CPU
Verilog Implementation with Hazard Detection and Forwarding

Author: Wuqiong Zhao & Ruiqi Zheng

Institute: Southeast University

Date: Jan. 7, 2022

Version: 2.0

License: MIT

Project Website: arm-lite.teddy-van-jerry.org

https://arm-lite.teddy-van-jerry.org/

Contents

Preface iii

1 Brief Introduction 1
1.1 Project Host Information . 1
1.2 Project Aim . 1

2 System Design 2
2.1 Pipeline Design . 2
2.2 Hazard Detection and Forwarding . 2

3 Supported Instructions 3
3.1 Summary . 3
3.2 R Type . 3

3.2.1 ADD . 3
3.2.2 SUB . 4
3.2.3 AND . 4
3.2.4 ORR . 4
3.2.5 EOR . 4
3.2.6 LSL . 4
3.2.7 LSR . 5

3.3 I Type . 5
3.3.1 ADDI . 5
3.3.2 SUBI . 5
3.3.3 ANDI . 5
3.3.4 ORRI . 5
3.3.5 EORI . 5

3.4 D Type . 5
3.4.1 LDUR . 5
3.4.2 STUR . 6

3.5 B Type . 6
3.5.1 B . 6

3.6 CB Type . 8
3.6.1 CBZ . 8
3.6.2 CBNZ . 8

4 Simulation Examples 9
4.1 Example 1 . 9
4.2 Example 2 . 10

CONTENTS

5 Known Issues 11
5.1 CPU Project . 11
5.2 Compiler . 11

6 Version History 12

Bibliography 13

A Future Work 14

ii

Preface

Before you comb through the contents of ARM Lite CPU design, a brief understanding of systematic
design work is like can be beneficial. The impression of developing this project is that it is by no means easy
but the whole system we build rewards us with great fulfillment. This project features the pipelined CPU with
hazard detection and forwarding, which leads to a lot of difficulty in implementation.

The project uses Verilog on Xilinx Vivado 2017.4 and has been tested both on Ubuntu and Windows.
Apart from the hardware implementation of the CPU, the project also contains a compiler that translates ARM
(64-bit) code into machine code using C++.

The authors would like to thank Man Feng and Xudong Ma for their assistance for their guidance and
assistance in pipelined CPU design. This work is originally the course project for Digital Design and
Computer Architecture, 2021 Fall of Southeast University.

There may be errors in this project and you are welcome to pull request on GitHub or contact the author
via E-Mail: wqzhao@seu.edu.cn.

Wuqiong Zhao
Jan. 7, 2022

At Southeast University

mailto:wqzhao@seu.edu.cn

Chapter 1 Brief Introduction

Introduction

h GitHub Repository
h Official Website

h Project License
h Project Aim

1.1 Project Host Information

The project of ARM Lite is open source and hosted on GitHub: github.com/Teddy-van-Jerry/ARM_Lite
with the official website at arm-lite.teddy-van-jerry.org.

You can fork the project repository or download source code at the release page. Since this project is
licensed under thr MIT License, you are free to use it subject to the requirements.

1.2 Project Aim

Pipelined CPU design has proven its vitality in many ways, as is elaborated in [1, 2]. Moreover, [3] points
out that it is especially a good training project for teaching computer architecture. Among Reduced Instruction
Set Computer (RISC) architectures, ARM has a good performance in parallelism shown in [4] which enables
its thrive today together with X86_64. The instruction set of ARM can be regarded as a compromise. The
supported instructions include the most frequently used ones and also less popular instructions. This makes
ARM instructions not so long but still able to be pipelined effectively.

Therefore we choose the pipelined CPU with ARM instructions set and implements its most basic instruc-
tions with R, I, D, B and CB types following the ideas of [5].

https://github.com/Teddy-van-Jerry/ARM_Lite
https://arm-lite.teddy-van-jerry.org

Chapter 2 System Design

Introduction

h Pipeline Design
h Hazard Detection

h Forwarding

2.1 Pipeline Design

The detailed design with control signals is shown in Fig. 2.1 where the bold black line represents the data
flow while the thin gray line represents the control signals.

WB

WB

M
EX

Instruction
Memory

Instruction
Memory

PCPC

++

0

1

0

1
Address

0

1

0

1

++

<< 2

Hazard
Detection Unit

Control
Unit

Sign ExtendSign Extend

0

1

0

1

32
\

64
\

4

RegistersRegisters

Data
Memory

Data
Memory

00
01

10

00
01

10

A
LU

A
LU

0

1

0

1

00
01

10

00
01

10

Forwarding
Unit

Address

Write Data

ALU
Control

Shifted PC

Zero

WB

M

M
U

X
M

U
X

AND

IF
/I

D
IF

/I
D

ID
/E

X

EX
/M

EM

M
EM

/W
B

31:0

31:21

4:0

M
e

m
W

ri
te

A
LU

O
p

R
e

g2
Lo

c

28

Mem2Reg

Mem2Reg

RegWrite

RegWrite

Mem2Reg

RegWrite

ALUOp

ALUSrc

A
LU

Sr
c

Instruction

31:21

R
e

gW
ri

te

MemRead

MemRead

MemWrite

MemWrite

Read
Reg 1

Read
Reg 2

Write
Reg

Write
Data

Read
Data 1

Read
Data 2

Read Data

BranchZe
ro

ConBranch

UnconBranch

C
o

n
B

ra
n

ch

OR

U
n

co
n

B
ra

n
ch

A
LU

C
o

n
tr

o
l

Fo
rw

ar
d

A

Fo
rw

ar
d

B

CLOCK

WBRegWrite
MemRead

MemWrite MEMRegWrite

PC

PCIC31:0

20:16

4:0

IC

9:5

MemRead

IFIDWrite
PCWrite
MUXControl

P
C

W
ri

te

MUXControl

P
C

Sr
c

P
C

Sr
c

Figure 2.1: ARM Lite CPU design, detailing Fig. 4.63 of [5].

There are five periods in this CPU, Instruction Fetch (IF)Instruction Decode (ID), Execute (EX), Memory
Access (MEM) and Register write back (WB) which are shown clearly in Fig. 2.1, divided by a large register
between periods. The functions of each components will be elaborated in Chapter 3.

2.2 Hazard Detection and Forwarding

Hazard Detection and Forwarding are both modules that work together to solve the hazard problem.

Chapter 3 Supported Instructions

Introduction

h R Type Instructions
h I Type Instructions
h D Type Instructions

h B Type Instructions
h CB Type Instructions
h Data Flow Graphs

3.1 Summary

Apart from the instructions already supported by the original project, this project adds all I type and CB
type instructions and also extend the range of R type instructions like LSL, LSR and EOR.

3.2 R Type

3.2.1 ADD

Example: ADD r5, r3, r2 (Add the values of r3 and r2 then put the result into r5)

WB

WB

M
EX

Instruction
Memory

Instruction
Memory

PCPC

++

0

1

0

1
Address

0

1

0

1

++

<< 2

Hazard
Detection Unit

Control
Unit

Sign ExtendSign Extend

0

1

0

1

32
\

64
\

4

RegistersRegisters

Data
Memory

Data
Memory

00
01

10

00
01

10

A
LU

A
LU

0

1

0

1

00
01

10

00
01

10

Forwarding
Unit

Address

Write Data

ALU
Control

Shifted PC

Zero

WB

M

M
U

X
M

U
X

AND

IF
/I

D
IF

/I
D

ID
/E

X

EX
/M

EM

M
EM

/W
B

31:0

31:21

4:0

M
e

m
W

ri
te

A
LU

O
p

R
e

g2
Lo

c

28

Mem2Reg

Mem2Reg

RegWrite

RegWrite

Mem2Reg

RegWrite

ALUOp

ALUSrc

A
LU

Sr
c

Instruction

31:21

R
e

gW
ri

te

MemRead

MemRead

MemWrite

MemWrite

Read
Reg 1

Read
Reg 2

Write
Reg

Write
Data

Read
Data 1

Read
Data 2

Read Data

BranchZe
ro

ConBranch

UnconBranch

C
o

n
B

ra
n

ch

OR

U
n

co
n

B
ra

n
ch

A
LU

C
o

n
tr

o
l

Fo
rw

ar
d

A

Fo
rw

ar
d

B

CLOCK

WBRegWrite
MemRead

MemWrite MEMRegWrite

PC

PCIC31:0

20:16

4:0

IC

9:5

MemRead

IFIDWrite
PCWrite
MUXControl

P
C

W
ri

te

MUXControl

P
C

Sr
c

P
C

Sr
c

Figure 3.1: Data flows for instructions ADD, SUB, AND, ORR, EOR.

PC will be incremented by 4 and the shifted PC will be discarded.
Input registers are in [20:16] and [9:5].
ALU MUX chooses 0, i.e. data just read from the registers.
ALUControl will tells ALU to do ADD operation.
No need to write memory but need to write back to registers.

3.2 R Type

3.2.2 SUB

Example: SUB r4, r3, r2 (Subtract the values of r3 and r2 then put the result into r4)
This is similar to ADD instruction except for the operation given by ALU Control to ALU.

3.2.3 AND

Example: AND r4, r3, r2 (Bit-wise AND the values of r3 and r2 then put the result into r4)
This is similar to ADD instruction except for the operation given by ALU Control to ALU.

3.2.4 ORR

Example: ORR r6, r2, r3 (Bit-wise OR the values of r2 and r3 then put the result into r6)
This is similar to ADD instruction except for the operation given by ALU Control to ALU.

3.2.5 EOR

Example: EOR r6, r2, r3 (Exclusive OR the values of r2 and r3 then put the result into r6)
This is similar to ADD instruction except for the operation given by ALU Control to ALU.

3.2.6 LSL

Example: LSL r6, r2, #3 (Logical Shift Left the values of r2 by 3 then put the result into r6)

WB

WB

M
EX

Instruction
Memory

Instruction
Memory

PCPC

++

0

1

0

1
Address

0

1

0

1

++

<< 2

Hazard
Detection Unit

Control
Unit

Sign ExtendSign Extend

0

1

0

1

32
\

64
\

4

RegistersRegisters

Data
Memory

Data
Memory

00
01

10

00
01

10

A
LU

A
LU

0

1

0

1

00
01

10

00
01

10

Forwarding
Unit

Address

Write Data

ALU
Control

Shifted PC

Zero

WB

M

M
U

X
M

U
X

AND

IF
/I

D
IF

/I
D

ID
/E

X

EX
/M

EM

M
EM

/W
B

31:0

31:21

4:0

M
e

m
W

ri
te

A
LU

O
p

R
e

g2
Lo

c

28

Mem2Reg

Mem2Reg

RegWrite

RegWrite

Mem2Reg

RegWrite

ALUOp

ALUSrc

A
LU

Sr
c

Instruction

31:21

R
e

gW
ri

te

MemRead

MemRead

MemWrite

MemWrite

Read
Reg 1

Read
Reg 2

Write
Reg

Write
Data

Read
Data 1

Read
Data 2

Read Data

BranchZe
ro

ConBranch

UnconBranch

C
o

n
B

ra
n

ch

OR

U
n

co
n

B
ra

n
ch

A
LU

C
o

n
tr

o
l

Fo
rw

ar
d

A

Fo
rw

ar
d

B

CLOCK

WBRegWrite
MemRead

MemWrite MEMRegWrite

PC

PCIC31:0

20:16

4:0

IC

9:5

MemRead

IFIDWrite
PCWrite
MUXControl

P
C

W
ri

te

MUXControl

P
C

Sr
c

P
C

Sr
c

Figure 3.2: Data flows for instructions ADDI, SUBI, ANDI, ORRI, EORI, LSL, LSR.

PC will be incremented by 4 and the shifted PC will be discarded.
Input register is in [9:5].
ALU MUX chooses 1, i.e. data coming from Sign Extend, the shamt part in the machine code.

4

3.3 I Type

ALUControl will tells ALU to do LSL operation.
No need to write memory but need to write back to registers.

3.2.7 LSR

Example: LSR r6, r2, #3 (Logical Shift Right the values of r2 by 3 then put the result into r6)
This is similar to LSL instruction except for the operation given by ALU Control to ALU.

3.3 I Type

3.3.1 ADDI

Example: ADDI r5, r3, #2 (Add the values of r3 and immediate 2 then put the result into r5)
Different from instruction ADD, the immediate comes from the Sign Extend and the ALU MUX chooses
the immediate out value.

3.3.2 SUBI

Example: SUBI r4, r3, #2 (Subtract the values of r3 with immediate 2 then put the result into r4)
This is similar to ADDI instruction except for the operation given by ALU Control to ALU.

3.3.3 ANDI

Example: ANDI r4, r3, #2 (Bit-wise AND the values of r3 and 2 then put the result into r4)
This is similar to ADDI instruction except for the operation given by ALU Control to ALU.

3.3.4 ORRI

Example: ORRI r6, r2, #3 (Bit-wise OR the values of r2 and 3 then put the result into r6)
This is similar to ADDI instruction except for the operation given by ALU Control to ALU.

3.3.5 EORI

Example: EORI r6, r2, #3 (Exclusive OR the values of r2 and 3 then put the result into r6)
This is similar to ADDI instruction except for the operation given by ALU Control to ALU.

3.4 D Type

3.4.1 LDUR

Example 1: LDUR r2, [r10] (Retrieve the value in memory at location r10 and put that value into register
r2)

Example 2: LDUR r3, [r10, #1] (Retrieve the value in memory at the location r10 + immediate (1)
and put that value into register r3)

PC will be incremented by 4 and the shifted PC will be discarded.
Input register is in [9:5].

5

3.5 B Type

WB

WB

M
EX

Instruction
Memory

Instruction
Memory

PCPC

++

0

1

0

1
Address

0

1

0

1

++

<< 2

Hazard
Detection Unit

Control
Unit

Sign ExtendSign Extend

0

1

0

1

32
\

4

RegistersRegisters

Data
Memory

Data
Memory

00
01

10

00
01

10

A
LU

A
LU

0

1

0

1

00
01

10

00
01

10

Forwarding
Unit

Address

Write Data

ALU
Control

Shifted PC

Zero

WB

M

M
U

X
M

U
X

AND
IF

/I
D

IF
/I

D

ID
/E

X

EX
/M

EM

M
EM

/W
B

31:0

31:21

4:0

M
e

m
W

ri
te

A
LU

O
p

R
e

g2
Lo

c

28

Mem2Reg

Mem2Reg

RegWrite

RegWrite

Mem2Reg

RegWrite

ALUOp

ALUSrc

A
LU

Sr
c

Instruction

31:21

R
e

gW
ri

te

MemRead

MemRead

MemWrite

MemWrite

Read
Reg 1

Read
Reg 2

Write
Reg

Write
Data

Read
Data 1

Read
Data 2

Read Data

BranchZe
ro

ConBranch

UnconBranch

C
o

n
B

ra
n

ch

OR

U
n

co
n

B
ra

n
ch

A
LU

C
o

n
tr

o
l

Fo
rw

ar
d

A

Fo
rw

ar
d

B

CLOCK

WBRegWrite
MemRead

MemWrite MEMRegWrite

PC

PCIC31:0

20:16

4:0

IC

9:5

MemRead

IFIDWrite
PCWrite
MUXControl

P
C

W
ri

te

MUXControl

P
C

Sr
c

P
C

Sr
c

64
\

Figure 3.3: Data flow for instruction LDUR.

ALU MUX chooses 1, i.e. data coming from Sign Extend, the addition to register value. Then the result
of them will be the data to write back.
ALUControl will tells ALU to do ADD operation.
No need to write memory but need to write back to registers.
It should be noticed that not until the end of period MEM the result is not given out. This is different from
instructions of R or I types where the calculation result comes immediately after ALU, i.e. the period of
EX.

3.4.2 STUR

Example 1: STUR r1, [r9] (Store the value of r1 into memory at the location r9)
Example 2: STUR r4, [r7, #1] (Store the value of r4 into memory at the location r7 + immediate (1))
PC will be incremented by 4 and the shifted PC will be discarded.
Input register is in [9:5].
ALU MUX chooses 1, i.e. data coming from Sign Extend, the addition to register value. Then the result
of them will be the data to write back.
ALUControl will tells ALU to do ADD operation.

3.5 B Type

3.5.1 B

Example: B #2 (Jump instruction with 2)
With the Unconditional Jump signal, the PC is set to the shifted PC.

6

3.6 CB Type

WB

WB

M
EX

Instruction
Memory

Instruction
Memory

PCPC

++

0

1

0

1
Address

0

1

0

1

++

<< 2

Hazard
Detection Unit

Control
Unit

Sign ExtendSign Extend

0

1

0

1

32
\

4

RegistersRegisters

Data
Memory

Data
Memory

00
01

10

00
01

10

A
LU

A
LU

0

1

0

1

00
01

10

00
01

10

Forwarding
Unit

Address

Write Data

ALU
Control

Shifted PC

Zero

WB

M

M
U

X
M

U
X

AND

IF
/I

D
IF

/I
D

ID
/E

X

EX
/M

EM

M
EM

/W
B

31:0

31:21

4:0

M
e

m
W

ri
te

A
LU

O
p

R
e

g2
Lo

c
28

Mem2Reg

Mem2Reg

RegWrite

RegWrite

Mem2Reg

RegWrite

ALUOp

ALUSrc

A
LU

Sr
c

Instruction

31:21

R
e

gW
ri

te

MemRead

MemRead

MemWrite

MemWrite

Read
Reg 1

Read
Reg 2

Write
Reg

Write
Data

Read
Data 1

Read
Data 2

Read Data

BranchZe
ro

ConBranch

UnconBranch

C
o

n
B

ra
n

ch

OR

U
n

co
n

B
ra

n
ch

A
LU

C
o

n
tr

o
l

Fo
rw

ar
d

A

Fo
rw

ar
d

B

CLOCK

WBRegWrite
MemRead

MemWrite MEMRegWrite

PC

PCIC31:0

20:16

4:0

IC

9:5

MemRead

IFIDWrite
PCWrite
MUXControl

P
C

W
ri

te

MUXControl

P
C

Sr
c

P
C

Sr
c

64
\

Figure 3.4: Data flow for instruction STUR.

WB

WB

M
EX

Instruction
Memory

Instruction
Memory

PCPC

++

0

1

0

1
Address

0

1

0

1

++

<< 2

Hazard
Detection Unit

Control
Unit

Sign ExtendSign Extend

0

1

0

1

32
\

64
\

4

RegistersRegisters

Data
Memory

Data
Memory

00
01

10

00
01

10

A
LU

A
LU

0

1

0

1

00
01

10

00
01

10

Forwarding
Unit

Address

Write Data

ALU
Control

Shifted PC

Zero

WB

M

M
U

X
M

U
X

AND

IF
/I

D
IF

/I
D

ID
/E

X

EX
/M

EM

M
EM

/W
B

31:0

31:21

4:0

M
e

m
W

ri
te

A
LU

O
p

R
e

g2
Lo

c

28

Mem2Reg

Mem2Reg

RegWrite

RegWrite

Mem2Reg

RegWrite

ALUOp

ALUSrc

A
LU

Sr
c

Instruction

31:21

R
e

gW
ri

te

MemRead

MemRead

MemWrite

MemWrite

Read
Reg 1

Read
Reg 2

Write
Reg

Write
Data

Read
Data 1

Read
Data 2

Read Data

BranchZe
ro

ConBranch

UnconBranch

C
o

n
B

ra
n

ch

OR

U
n

co
n

B
ra

n
ch

A
LU

C
o

n
tr

o
l

Fo
rw

ar
d

A

Fo
rw

ar
d

B

CLOCK

WBRegWrite
MemRead

MemWrite MEMRegWrite

PC

PCIC31:0

20:16

4:0

IC

9:5

MemRead

IFIDWrite
PCWrite
MUXControl

P
C

W
ri

te

MUXControl

P
C

Sr
c

P
C

Sr
c

Figure 3.5: Data flow for instruction B.

7

3.6 CB Type

3.6 CB Type

3.6.1 CBZ

Example: CBZ r1, #2 (If the value of r1 is zero then jump to instruction 2, otherwise, continue executing
PC++)

WB

WB

M
EX

Instruction
Memory

Instruction
Memory

PCPC

++

0

1

0

1
Address

0

1

0

1

++

<< 2

Hazard
Detection Unit

Control
Unit

Sign ExtendSign Extend

0

1

0

1

32
\

64
\

4

RegistersRegisters

Data
Memory

Data
Memory

00
01

10

00
01

10

A
LU

A
LU

0

1

0

1

00
01

10

00
01

10

Forwarding
Unit

Address

Write Data

ALU
Control

Shifted PC

Zero

WB

M

M
U

X
M

U
X

AND

IF
/I

D
IF

/I
D

ID
/E

X

EX
/M

EM

M
EM

/W
B

31:0

31:21

4:0

M
e

m
W

ri
te

A
LU

O
p

R
e

g2
Lo

c

28

Mem2Reg

Mem2Reg

RegWrite

RegWrite

Mem2Reg

RegWrite

ALUOp

ALUSrc

A
LU

Sr
c

Instruction

31:21

R
e

gW
ri

te

MemRead

MemRead

MemWrite

MemWrite

Read
Reg 1

Read
Reg 2

Write
Reg

Write
Data

Read
Data 1

Read
Data 2

Read Data

BranchZe
ro

ConBranch

UnconBranch

C
o

n
B

ra
n

ch

OR

U
n

co
n

B
ra

n
ch

A
LU

C
o

n
tr

o
l

Fo
rw

ar
d

A

Fo
rw

ar
d

B

CLOCK

WBRegWrite
MemRead

MemWrite MEMRegWrite

PC

PCIC31:0

20:16

4:0

IC

9:5

MemRead

IFIDWrite
PCWrite
MUXControl

P
C

W
ri

te

MUXControl

P
C

Sr
c

P
C

Sr
c

Figure 3.6: Data flows for instructions CBZ, CBNZ.

The Conditional Branch is set to 1.
The most important thing here is the Zero flag of ALU. The operation of ALU is takes the value of [4:0]
directly. Therefore, the result of the Branch module generates the PCSrc signal that decides whether PC
to jump.

3.6.2 CBNZ

Example: CBNZ r1, #2 (If the value of r1 is not zero then jump to instruction 2, otherwise, continue
executing PC++)

The Conditional Branch is set to 1.
The most important thing here is the Zero flag of ALU. The operation of ALU is takes the logic Not of
[4:0]. Therefore, the result of the Branch module generates the PCSrc signal that decides whether PC
to jump.

8

Chapter 4 Simulation Examples

Introduction

h Behavioral Simulation
h Simulation Waveforms

h Instructions Analysis

4.1 Example 1

LDUR x0, [x2, #3] ; f8403040

ADDI x5, x9, 7 ; 91001 d25

ANDI x3, x3, 3 ; 92000 c63

SUBI x6, x6, 3 ; d1000cc6

LSL x7, 1 ; d36004e7

B -3 ; 17 fffffd

Figure 4.1: Simulation Waveforms for Example 1

With the IF, ID, EX, MEM and WB stages of a pipelined CPU, each instruction is executed at the positive
edge of the clock signal. Therefore, there will be five occurrences of the positive edges during one cycle of an
instruction.

In example 1, six instructions are used.
During the LDUR instruction, PC=0. When PC=4, x2 is read from the registers. This value is then added with

the immediate value from Sign Extend. (Because of the hazard detection, one NOP is added automatically.)
From the third positive edge, ALU executes the addition of x2 and 3. In the fourth positive edge, the value of
RAM[5] is read out (We can find the MemRead control signal during 6-8 ns). From the fifth positive edge, x1
and RAM[5] is returned to the registers and then x1=RAM[5]. Because of NOP, ADDI instructions come from the
the third positive edge and write back at the 8th positive edge. When dealing with immediate values, ALUSrc
signal is set to 1.

It is similar for ANDI, SUBI, LSL commands, and the changes of values in registers can also be observed.

4.2 Example 2

Because the jump by instruction B occurs in the fourth clock period, PC jumps from 28 to 8, forming a
loop. When the jump is required, PCSrc is set to 1.

4.2 Example 2

LDUR x0 , [x2 , #3] ; f8403040

LSR x16 , #1 ; d3400610

EOR x1 , x2 , x0 ; ca000041

CBZ x31 , #8 ; b400011f

ORRI x4 , x5 , 7 ; b2001ca4

EORI x10 , x11 , #11 ; d2002d6a

; SKIP THREE LINES ;

ORRI x4 , x5 , 7 ; b2001ca4

EORI x10 , x11 , #11 ; d2002d6a

STUR x11 , [x5 , #6] ; f80060ab

Figure 4.2: Simulation Waveforms for Example 2

Here we elaborate on the conditional branch CBZ instruction. First the ZERO flag is 1 in 12-14 ns and then
conditional branch signal is 1 in 14-16 ns. Therefore, the branch will get the result 1 in 16-18 ns. In the next
clock period, the PCSrc will be set as 1 and then the conditional jump succeeds.

10

Chapter 5 Known Issues

5.1 CPU Project

Hazard Detection and Forwarding is naive and cannot tell exactly tell where forwarding or NOP is needed.
Control hazard can not be solved so far and can lead to fatal error in simulation.

5.2 Compiler

This work is still under progress and should be finished in the following weeks.

Chapter 6 Version History

We revised our project now and then. This section shows the version story of ARM Lite. We have 37
commits and 2 releases on GitHub.

2022/01/07 Updates:release of v2.0
1 Solve the bug with instructions CBZ and CBNZ.
2 Add Simulation Test.

2021/12/24 Updates:release of v1.1
1 Add instructions.

2021/12/23 Updates:release of v1.0
1 Work based on ARM-LEGv8 (pipelined with hazard detection and forwarding) is implemented on Xilinx

Vivado 2017.4 both on Ubuntu and Windows.
2 Create the Visio Drawing for the CPU architecture.

https://github.com/nxbyte/ARM-LEGv8

Bibliography

[1] G. S. Sohi, “Instruction issue logic for high-performance, interruptible, multiple functional unit, pipelined
computers,” vol. 39, no. 3, pp. 349–359, 1990.

[2] G. Qin, Y. Hu, L. Huang, and Y. Guo, “Design and performance analysis on static and dynamic pipelined
cpu in course experiment of computer architecture,” in Proceedings of IEEE International Conference on
Computer Science & Education (ICCSE), IEEE, 2018, pp. 1–6.

[3] J. H. Lee, S. E. Lee, H. C. Yu, et al., “Pipelined CPU design with FPGA in teaching computer architecture,”
vol. 55, no. 3, pp. 341–348, 2011.

[4] J. Goodacre and A. N. Sloss, “Parallelism and the ARM instruction set architecture,” Computer, vol. 38,
no. 7, pp. 42–50, 2005.

[5] D. A. Patterson and J. L. Hennessy, Computer organization and design ARM edition: the hardware software
interface. Morgan kaufmann, 2016.

[6] C. T. Carlstrom and T. S. Fuerst, “Agency Costs, Net Worth, and Business Fluctuations: A Computable
General Equilibrium Analysis,” The American Economic Review, pp. 893–910, 1997, issn: 0002-8282.

[7] Q. Li, L. Chen, and Y. Zeng, “The Mechanism and Effectiveness of Credit Scoring of P2P Lending
Platform: Evidence from Renrendai.com,” China Finance Review International, vol. 8, no. 3, pp. 256–
274, 2018.

Appendix A Future Work

Issues listed will be dealt with and a better documentation will be done together with the online documen-
tation.

Moreover, an essay about the design of ARM Lite CPU will also be on the agenda.

Figure A.1: ARM Lite website.

	Preface
	1 Brief Introduction
	1.1 Project Host Information
	1.2 Project Aim

	2 System Design
	2.1 Pipeline Design
	2.2 Hazard Detection and Forwarding

	3 Supported Instructions
	3.1 Summary
	3.2 R Type
	3.2.1 ADD
	3.2.2 SUB
	3.2.3 AND
	3.2.4 ORR
	3.2.5 EOR
	3.2.6 LSL
	3.2.7 LSR

	3.3 I Type
	3.3.1 ADDI
	3.3.2 SUBI
	3.3.3 ANDI
	3.3.4 ORRI
	3.3.5 EORI

	3.4 D Type
	3.4.1 LDUR
	3.4.2 STUR

	3.5 B Type
	3.5.1 B

	3.6 CB Type
	3.6.1 CBZ
	3.6.2 CBNZ

	4 Simulation Examples
	4.1 Example 1
	4.2 Example 2

	5 Known Issues
	5.1 CPU Project
	5.2 Compiler

	6 Version History
	Bibliography
	A Future Work

